
1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 1/27

Exercise 1. Introduction to Python Methods and Data
Structures
In GIS modeling or GIS data management, you often need to process a series of steps to get your work done.
You might have a workspace full of data to reproject, clip to a study area, or combine in some way to get to an
output product. We also often need to process data in different ways depending on conditions – thus we need to
make decisions, and while high-level decisions require considered thought by users there are many low-level
decisions that can be aided by a script programming model.

The main purpose of script programming is to automate tedious work in processing our data, and to use logic to
direct that process. I think those two words are key: automate and logic. They distinguish this activity from the
more common interaction we use computers for most of the time. To communicate by email, to compose a
document, or to design a map, we need to interact; to process a lot of data, we need to automate and use logic
to guide the automation.

In geoprocessing script logic, we’ll make decisions that allow us to, for example, handle rasters differently from
vector data, or only set map projections for unprojected data, or process datasets collected only at certain times.
For any serious GIS work, scripting and other forms of programming becomes a necessity, not an option.

In this exercise, we’ll explore the use of Python to create scripts that allow us to use the vast suite of
geoprocessing tools in ArcGIS Pro. All of the tools you can use from the toolbox or in a model can also be used
in a Python script. And these scripts can be made into script tools that we can use like any other geoprocessing
tools. We’ll be doing this in a later section of the exercise.

Here's a guide to going through the exercise. Obviously all of the text is important or I wouldn't have written it. It
will guide you through what you're needing to learn. But there will be certain parts where you need to respond,
and I've used icons to point these out:

➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

Learning Python in a Jupyter Notebook
Well, you're here in a Jupyter Notebook, which provides us the ability to edit our code as well as Markdown,
which you're seeing here. Let's just start by entering in code in a code chunk. The text you're reading now
however is in a Markdown section, basically for formatted text, but if you run things in the code cell below, you'll
get a result. The code cell assigns a scalar object (a type of variable) x  with the number 5 , then submits that
variable to the print()  function to display what it holds.

⌨ To run this code cell, press the Run button at the top or type Ctrl-Enter in the code cell.



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 2/27

In [ ]: x = 5
print(x)

Learning more about the Jupyter Notebook or Jupyter Lab environment
Before we go any further, you should learn a bit about the Jupyter Notebook or Lab interface, whichever you're
using.

➦ Go through Help menu to learn your way around. Jupyter Notebook also has a tour. You'll find keyboard
shortcuts, a more extensive reference, and Markdown formatting. And you'll see that there are links to references
for a lot of things we'll be using in the class: Python, NumPy, Matplotlib, pandas.

Writing a code cell
For the first code cell, we provided the code. From here on out you'll want to type in code into the chunk and run
it. Make sure to actually type it -- don't just copy it. You actually learn by typing. And you should get in the habit of
figuring out what you need to type and then typing without looking at the example. Start by studying the
instructions, then without looking, type in the code to run it. You'll learn the most by making mistakes and
needing to fix them.

Now create a character-string scalar named msg  and assign it "Hello World". It should look like this:

msg = "Hello World"
print(msg)

Reminder: Look for the keyboard icon for when you're supposed to write code in the following code cell:

⌨

In [ ]: #

To get the square of a number, follow it with **2 .

⌨ Apply this to the x  variable and print the result. print(x**2)

In [ ]: #

➦ The next code cell should just be run; you don't need to try to figure it out. It provides multiple outputs from a
code cell. You can save this with any notebook you create, using it as "boilerplate".

5

Hello World

25



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 3/27

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

1.1 Python variables
What is a Variable? It is critical that you understand what a variable is. That being said, there are two different
meanings of the word variable based upon where you use it. In mathematics, a variable is something like x  or
y  that holds a numeric value. In computer programming, this is extended to also mean other types of data like

text, and the notion of strings of characters like "Hello World"  are used. They can also be named x  and y
etc., but typically variables in computer programs have more descriptive names. The other meaning of the word
variable is from the database world, and the GIS world by extension, where a variable might be a column in the
database, called a field and given a name. In that world something that holds a single value (numerical, text, or
other type) is called a scalar. But for now, we'll use the word variable for that.

Think of a variable as a box where you can store anything, even other boxes (variables). When programming, we
represent variables with one or more letters of our choosing (x, i, slope_raster). We then assign a value to a
variable with the equal sign “=” (name = “Anne”). This value can be in the format of a number, a string of text, a
list, or a complex set of things. We can re-assign a new value to our variable as many times as we want – which
is why we call it a variable – its value can vary. Type out the following in console to get a better sense of
variables. Text behind the “#” is a comment:

numeric variables
There are two types of numeric variables in python - integer and floating point. Integer variables hold integer
numbers only. Floating point variables hold decimal point numbers.

x = 5  creates integer variable x  and assigns 5  to it.. the value of x  is 5
x = -17  the value of variable x  is now -17
print(type(x))
x = -23.568  variable x  is now a floating point type with value -23.568 ]

Then check its type again.
number = x + 10  creates variable number , and assigns the value of x + 10  to it
print(number)  prints the value of number

⌨ Run some similar code below to explore how variables and printing work:

In [ ]: x = -17
print(type(x))
x = -23.568
print(type(x))

<class 'int'>
<class 'float'>



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 4/27

string variables (made of text)
Important syntax: A string literal value must be in quotation marks, ei. “Hello”

msg = "Hello"  creates string variable msg and assigns “Hello” as its value
path = "c:/prog/mydata"  string variable path with value "D:/prog/mydata"

⌨ Run some similar code below to explore how string variables work. Make sure to create msg and path
variables you'll use below

In [ ]: #

Boolean variables (true or false)
Another data type is Boolean, meaning True  or False . The constants that can be used to assigns these are
literally True  and False , but these are typically created by evaluating an expression, like 5 > 6

⌨

tf = 5 > 6
print(tf)
print(type(tf))
print(type(True))

In [ ]: #

It's often useful to realize that True  can also be interpreted or entered as the integer 1 , and False  is 0  as
you can see by including the Boolean variable in a mathematical expression like False * 2  or True * 2 .

In [ ]: False * 2

In [ ]: True * 2

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

c:/prog/mydata

False
<class 'bool'>
<class 'bool'>

Out[ ]: 0

Out[ ]: 2



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 5/27

In fact, any non-zero value will be interpreted as True , but False  is always zero.

⌨ Enter some code that will create Boolean variables:

In [ ]:

Functions, methods and properties
We'll be using a lot of functions, methods and properties, so we should know what they are.

Functions are written as functionName(input) . We'll see a lot of these in the math module, but you can
see what the built-in functions are at https://docs.python.org/3/library/functions.html
(https://docs.python.org/3/library/functions.html)

In [ ]: import math
sin = math.sin
radians = math.radians
pi = math.pi
abs(-5)
sin(30/180*pi)
sin(radians(30))

Methods are written as obj.method(parameters)  and applies to that object. To see what methods apply
to an object, type the dot and press tab. There aren't many for the simple numeric variables. Try it out, but
here's one example.

y = 0.5
y.
y.as_integer_ratio()

In [ ]: #

In [ ]: mystr = "hello"
mystr.capitalize()

Out[ ]: 5

Out[ ]: 0.49999999999999994

Out[ ]: 0.49999999999999994

Out[ ]: (1, 2)

Out[ ]: 'Hello'

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html


1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 6/27

Properties are similar to methods in being applied to an object, but there are no parameters, thus no () ;
they simply are a property of some sort. Once again, to see what properties are available to an object, press
tab after the dot. Try it out

x = 2
x.
x.denominator

In [ ]: #

1.2 Lists, Tuples, and Dictionaries
To make data much more useful than simple scalar variables, programming languages make use of sets of data,
traditionally called arrays. We'll be looking at a variety of types of these, eventually getting to NumPy arrays and
pandas.DataFrames, where we'll work with data like a database. We'll start with looking at the most common set
type, the list, and then immutable lists called tuples and look-up systems called dictionaries. These will all
serve important purposes in working with data of various types, and especially the spatial data that we're most
concerned about.

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

list
A list is simply a set of objects, which might be entered as numeric, Boolean or string constants.
Syntax: To create a list, you must use brackets [] :

emptyList  = []  creates list variable emptyList, which is currently empty
aList = [5, 7.83, "Fred"]  creates a list combining different types of things

⌨ Run the above code

In [ ]: #

Out[ ]: 1

Out[ ]: [5, 7.83, 'Fred']



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 7/27

You can also populate a list with previously assigned variables or other objects like lists.

⌨ Enter some new variables and combine these and some constants into a list:

x = 5
msg = "Hello"
path = "c:/py/data"
anotherList = [x, msg, path, 2.7, aList]
anotherList

In [ ]: #

In the next code chunk:

Create a new variable a  and assign the value 2 .
Create a new variable b  and set its value with the expression: a + 3
Create a new variable wspath  and set its value to the path to the folder you're working in.

⌨

In [ ]: #

Subsetting lists:

You can pull out a subset of a list (sometimes called slicing) by using list indices defining the position or positions
of list items that you want to extract. This takes a bit of getting used to, but the key is to know that the index
refers to a position between each element in a list, as shown here.

lyr = ["geology", "landuse", "publands", "streams", "cities"]
     0         1          2           3          4         5

You can use a single index value to refer to a single item, starting at that position, as shown here:

lyr[1]  starts at beginning of "landuse" , so it refers to "landuse"

In [ ]: lyr = ["geology", "landuse", "publands", "streams", "cities"]
lyr[1]

Out[ ]: [5, 'Hello', 'c:/py/data', 2.7, [5, 7.83, 'Fred']]

2
5
c:\data\exer

Out[ ]: 'landuse'



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 8/27

In essence, this is shorthand for what could be given as:

In [ ]: lyr[1:2]

... which means the same thing, starts at 1  and goes to start of 2

Look for the ❔ question mark to answer a question, by editing the markdown cell it's in and entering a new line.
Once you're done editing, you can "run" it to format it, just like a code cell.

❔ However, there's a subtle but important difference. What is it?

: lyr[1:2]  returns a list

⌨ To get the first two items in the list, use [0:2]

In [ ]: lyr[0:2] # starts at `0` and goes to the start of `2`

⌨ How would you get the first three items?

In [ ]: #

⌨ You can also identify positions relative to the end of the list: lyr[-2:]  starts two indices before the end of
the list:

In [ ]: #

⌨ How would you get only the last item?

In [ ]: #

⌨ How would you get only the first item, as a list of that one item? lyr[:1]

Out[ ]: ['landuse']

Out[ ]: ['geology', 'landuse']

Out[ ]: ['geology', 'landuse', 'publands']

Out[ ]: ['streams', 'cities']

Out[ ]: ['cities']



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 9/27

In [ ]: #

If you have a list of one item, to get what that one item contains, you can follow it with another list request:

In [ ]: print(lyr[1:2])
print(lyr[1:2][0])
print(lyr[1]==lyr[1:2][0])

If you can create an empty list (ie. myList = []  ) or you just want to add more items to your list, you can use
the append method.

⌨ We haven't used a method before, but it is something you do to a Python object. The syntax for a method is
object.method(), as in Addresses.append(a1)  below:

a1 = [1212, "First St", "SF", "CA"]
a2 = [2323, "Second St", "Seattle", "WA"]
a3 = [3434, "Third St", "Denver", "CO"]

Addresses = []
Addresses.append(a1)
Addresses.append(a2)
Addresses.append(a3)

print(Addresses[0])
print(Addresses[1][1])
print(Addresses[2][3])

In [ ]: #

Similar to a question, provide an interpretation when you see the ⛬ symbol

⛬ Interpret what you get from the last statement.

:

Out[ ]: ['geology']

['landuse']
landuse
True

[1212, 'First St', 'SF', 'CA']
Second St
CO



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 10/27

❔ If address1 above is a list, what is Addresses?

: a __ of __.

⌨ Then how would you print the house number from the third record of Addresses?

Addresses[2][0]

In [ ]: #

⌨ Create and print a list built from your name and semester schedule, with the semester schedule built of lists
with prefix (e.g. "GEOG") and course number (e.g. "625").

In [ ]:

append  vs extend
When we used .append  above, each time we append one item, which we saw was often a list. What if we
wanted to simply combine two lists into one longer one? That's what .extend  does, or its equivalent, adding
lists together with a +  operator which is really simpler so we'll use that:

Pacific = ['AK','CA','OR','WA']
Desert = ['AZ','NV','UT']
Mountain = ['ID','MT','WY','CO','NM']
WestStates = Pacific + Desert + Mountain
WestStates

In [ ]: #

In [ ]: States = Pacific
States.append(Desert)
States

Sorting lists
.sort  sorts a list. If we have a random list...

Out[ ]: 3434

Out[ ]: ['AK', 'CA', 'OR', 'WA', 'AZ', 'NV', 'UT', 'ID', 'MT', 'WY', 'CO', 'NM']

Out[ ]: ['AK', 'CA', 'OR', 'WA', ['AZ', 'NV', 'UT']]



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 11/27

In [ ]: from random import random as rnd
mylist = []
for i in range(20):
   mylist.append(int(rnd()*10))
mylist

... the sort()  method sorts it. Note that it changes the list called since it's a method of the list. Then we can
display it:

mylist.sort()
mylist

In [ ]: #

Counting lists
.count(x)  returns a count of the value x specified.

for i in range(10):
   print("frequency of {}: {}".format(i, mylist.count(i)))

In [ ]: from random import random as rnd
mylist = []
for i in range(20):
   mylist.append(int(rnd()*10))
mylist 
for i in range(10):
   print("frequency of {}: {}".format(i, mylist.count(i)))

Out[ ]: [1, 1, 7, 3, 7, 8, 2, 8, 3, 0, 9, 6, 4, 1, 3, 1, 1, 8, 8, 4]

Out[ ]: [0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 6, 7, 7, 8, 8, 8, 8, 9]

Out[ ]: [2, 2, 1, 9, 6, 1, 9, 2, 1, 5, 0, 4, 8, 3, 6, 4, 3, 9, 5, 6]

frequency of 0: 1
frequency of 1: 3
frequency of 2: 3
frequency of 3: 2
frequency of 4: 2
frequency of 5: 2
frequency of 6: 3
frequency of 7: 0
frequency of 8: 1
frequency of 9: 3



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 12/27

⛬ We haven't used loops before, but see if you can interpret what the code above did and how it worked.

:

Tuples
We've just been using lists, which allow you to append new members to the list. Sometimes if you know you're
not going to want to change anything in a list you may want to use an immutable collection called a tuple. It
othewise works the same as as list but to create one you use parentheses instead of brackets. You can also
create them with commas, so the following tuples are identical:

In [ ]: mytuple1 = 5, 7, "name", 8
mytuple2 = (5, 7, "name", 8)
print(mytuple1)
print(mytuple2)

⌨ So we might use tuples in the above example. While we may want to append to the set of addresses, each
individual address could be a tuple. So create a comparable example this way:

a1 = (1212, "First St", "SF", "CA")
a2 = (2323, "Second St", "Seattle", "WA")
a3 = (3434, "Third St", "Denver", "CO")

Addresses = []
Addresses.append(a1)
Addresses.append(a2)
Addresses.append(a3)
print(Addresses)

In [ ]: #

⌨ You may want to note that accessing a part of a tuple requires using square brackets (since using
parentheses might be interpreted as a method or function call), like this:

Addresses[1][1]

In [ ]: #

(5, 7, 'name', 8)
(5, 7, 'name', 8)

[(1212, 'First St', 'SF', 'CA'), (2323, 'Second St', 'Seattle', 'WA'), (3434, 
'Third St', 'Denver', 'CO')]

Out[ ]: 'Second St'



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 13/27

Dictionaries
Dictionaries are used when you want to store named data as key:data pairs, and uses braces to create. We'll find
dictionaries useful when we start working with NumPy arrays and pandas.DataFrames, where we'll want to start
organizing our data with variable names or individual object names. A dictionary is a set that is ordered (as of
Python 3.7), mutable, but do not allow duplicates.

Two common purposes of dictionaries for GIS data processing is to create rows (records or observations) and to
create columns (fields or variables) in our data. We'll start with create a row.

⌨ To create a dictionary, use braces and key:data pairs:

CA = {
   "name":"California",
   "capital":"Sacramento",
   "areakm2":423970,
   "population":39538223
}
print(len(CA))
CA

In [ ]: #

⌨ Another example is for a row of climate data from a weather station:

GROVELAND = {"ELEVATION":853,
            "LATITUDE":37.8444,
            "LONGITUDE":-120.2258,
            "PRECIPITATION":176.02}
GROVELAND

In [ ]: #

4

Out[ ]: {'name': 'California',
'capital': 'Sacramento',
'areakm2': 423970,
'population': 39538223}

Out[ ]: {'ELEVATION': 853,
'LATITUDE': 37.8444,
'LONGITUDE': -120.2258,
'PRECIPITATION': 176.02}



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 14/27

⌨ Now we'll create a (short) variable PRECIPITATION with keys as indices, and see how the key works this
way:

PRECIPITATION = {"GROVELAND":176.02,
                "LEE VINING":71.88,
                "PLACERVILLE":170.69}
PRECIPITATION["PLACERVILLE"]

In [ ]: #

⌨ Since dictionaries are mutable, we can add to them this way:

PRECIPITATION["BRIDGEPORT"] = 41.4
PRECIPITATION

In [ ]: #

Out[ ]: 170.69

Out[ ]: {'GROVELAND': 176.02,
'LEE VINING': 71.88,
'PLACERVILLE': 170.69,
'BRIDGEPORT': 41.4}



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 15/27

⌨ There are several dictionary methods, and a very useful one is to access the keys themselves as a list, which
then can be used for various purposes, such as looping through the data.

print(PRECIPITATION.keys())
for station in PRECIPITATION.keys():
   print(PRECIPITATION[station])

In [ ]: PRECIPITATION.keys()
for station in PRECIPITATION.keys():
   print(PRECIPITATION[station])

In [ ]: GROVELAND.keys()

We'll be looking at dictionaries more when we get to NumPy arrays and pandas, where some database objects
expect to be built with dictionaries.

1.3 Mathematical Computation Using Operators
Python provides a variety of common mathematical operators, typical of most programming languages, and
many more through modules you import – we’ll look at these later. See one of the books recommended above, or
the help system (under “numeric types”), to learn more about these. Common operators are +  -  *  /  **
(raise to a power), %  (used for modulo, remainder from division).

Arithmetic operators
Check the following arithmetic operators as to what they return, integer or floating point:

Addition or subtraction:

x = 2 + 3
y = 2. + 3
z = 2 - 3

Use type()  to see what type they are:

Out[ ]: dict_keys(['GROVELAND', 'LEE VINING', 'PLACERVILLE', 'BRIDGEPORT'])

176.02
71.88
170.69
41.4

Out[ ]: dict_keys(['ELEVATION', 'LATITUDE', 'LONGITUDE', 'PRECIPITATION'])



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 16/27

In [ ]: #

You don't really need to assign a variable, since you can just check an expression like the following.

In [ ]: print(2.+3)

But by reusing the variable you can avoid testing two different things due to typos, and this is good practice for
coding.

In [ ]: y = 2. + 3
print(y)
type(y)

Spaces are typically unnecessary, but test to make sure.

z=2-3
print(z)
print(type(z))

In [ ]: #

⛬ Interpretation (Addition and Subtraction):

Multiply

2 * 3  2. * 3

⌨ For each of these, assign variables, print the result and type, like the following:

m = 2 * 3
print(m)
print(type(m))

<class 'int'>
<class 'float'>
<class 'int'>

5.0

5.0

Out[ ]: float

-1
<class 'int'>



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 17/27

In [ ]: #

⛬ Interpretation (Multiplication):

Divide

1 / 2
1. / 2
4 / 2

⌨

In [ ]: #

In [ ]: #

In [ ]: #

⛬ Interpretation (Divide):

Power

5 ** 2
5 ** 2.0

⌨

In [ ]: #

In [ ]: #

⛬ Interpretation (power), including what happened with all integer inputs.

:

6.0
<class 'float'>

Out[ ]: 0.5

Out[ ]: 0.6

Out[ ]: 2.0

Out[ ]: 25

Out[ ]: 25.0



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 18/27

Square root

25 ** (1/2)
25 ** (0.5)

⌨

In [ ]: #

⛬ Interpretation (square root)

:

Modulo

Occasionally very useful is the remainder from division, called the "modulo". Knowing the remainder from division
is great when you have wrapping values, like those of a clock or a compass. You can also use modulo to figure
out if one number is divisible by another (modulo will equal 0). In Python, the operator used for modulo -- %  -- is
unfortunately confusing, but its use is simple, and best seen by example.

print("modulus = 10")
for n in range(2, 14, 2): 
   print(n, n % 10)   # 10 might be a common repeated value
print("modulus = 360, for compass azimuth (°)")
for n in range(90, 720, 90): 
   print(n, n % 360)   # Compass azimuth (°) is a good application of modulos in a 
cycle.15

In [ ]: #

Out[ ]: 5.0

modulus = 10
2 2
4 4
6 6
8 8
10 0
12 2
modulus = 360, for compass azimuth (°)
90 90
180 180
270 270
360 0
450 90
540 180
630 270



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 19/27

Conversion functions
We'll be looking at many additional functions imported from various modules, but there are some functions that
are so commonly needed that they are built in to the core language. Conversion functions of various types are
good examples. For example, you often need to convert numbers to other formats, or convert strings to numbers
and vice-versa.

str(5.278)  Converts a number to a string.

⌨

In [ ]: #

int("4")  Converts a string to an integer number.

⌨

In [ ]: #

int("4.17")

❔ Why did you get an error?

⌨

In [ ]:

float("4.17")  Converts a string to a floating point number.

⌨

In [ ]: #

Out[ ]: '5.278'

Out[ ]: 4

Out[ ]: 4.17



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 20/27

x = 9.53
y = int(x)
print(y)
z = float(y)

⌨

In [ ]: #

❔ What is different between x and y?

:

❔ What is different between y and z?

:

❔ Does int( ) round or truncate (round down)?

:

x = "7.25"
int(float(x))

⌨

In [ ]: #

❔ Why did this work ? (In relation to int(x)  which raises an error):

:

9

Out[ ]: 7



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 21/27

1.4. Character Strings
A string is a sequential set of characters of text, like 'San Francisco'  or 'c:/625/pr/hmb/landuse.shp'
or '94132' . It helps to think of them as a sequence of characters, a string of characters, with each character
having a position starting with zero, very much like a list. There are many ways to work with text strings in
Python, and many of these come in handy in GIS work, especially when working with datasets, fields, and text
field values.

To review: Functions, Methods, and Properties: With numerical objects we've been working with functions
which apply to the numerical object in the form function(objects) . A method is like a function but it applies
to an object that is in a class that includes that method as a capability, and is run as object.method() . We'll
also see some properties which look a bit like methods, with the form object.property , and thus have no
parameters; they are just properties of the object.

A string object might be a string literal (like "a string"  or 'c:/625/pr/hmb/landuse.shp' ) or a variable
that has been assigned a string. Methods are applied by writing them in after a dot following the string object.

The best way to understand strings is to try them in Python, which we’ll do next. Key takeaway: You should
clearly understand (1) how a string can be assigned to a variable; (2) how you can use and extract parts of a
string variable; and (3) how strings can be manipulated.

Some common string methods
Python includes several string manipulation methods. We'll look at:

.capitalize()  Capitalize a word (so make the first character a capital)

.upper()

.lower()

.isupper()

.islower()

.split()

Try the following:

s = "the science of where"
print(s.capitalize())
print(s.capitalize().isupper())
print(s.upper())
print(s.upper().isupper())
print(s.split(" "))

⌨



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 22/27

In [ ]: #

⛬ Interpret the above. What did you learn from the above?

String indices
Strings can be dealt with as a list of characters, with the first one having a zero index. A set of string characters
can be defined with a format like 1:3, meaning "from the beginning of 1 to the beginning of 3" -- so it doesn't
display the character that is at index 3.

print(s[0])
s1 = s[1]
print(s1)
print(s[2])
print(s[-5:])
print(s[4:11])
print(s.split(" ")[1])

⌨

In [ ]: #

String splitting and using len()
As we just saw, strings are indexed like lists, and another similarity is what you get with the len()  function. The
.split()  method is very useful for breaking apart a string into components based on a separator. Note how
len()  is used here

words = s.split(" ")
print(words[len(words)-1])
print(len(words[len(words)-1]))

⌨

The science of where
False
THE SCIENCE OF WHERE
True
['the', 'science', 'of', 'where']

t
h
e
where
science
science



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 23/27

In [ ]: #

⛬ Interpret the above:

Concatenating strings
In Python, strings can be concatenated using + . No spaces are inserted between them however, so you often
need to also concatenate spaces:

print(words[3] + words[1])
print(words[3] + " " + words[1])

⌨

In [ ]: #

⛬ Interpret the above:

The escape character \
The backslash is an "escape character" which is used for special needs that can't be easily typed. For instance,
you can include a single quote alone with \' , a new line with \n  and a tab with \t .

print('Jerry\'s Kids')
print('\nJerry\'s\nKids')

⌨

In [ ]: #

⛬ Interpret the above:

where
5

wherescience
where science



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 24/27

But what if you want to include a backslash itself, such as in a Windows file path which uses backslashes?

You can create a single backslash by using a double backslash \\ , so a path might look like the following.

print('d:\\work\\soil.shp')

⌨

In [ ]: #

⛬ Interpret the above:

Including quotation marks in a string
It's often useful to be able to include quotation marks in a string, such as when you might specify a variable in a
query. Single quotes are paired with other single quotes, and double quotes are paired with other double quotes.
Alternatively, you can use the escape method \"  or \'  to include that quotation mark within a string; or you
can use triple quotation marks to do the same thing. The following three examples (and you could come up with
more) are equivalent.

selstr1 = '"elev" > 1000'
selstr2 = "\"elev\" > 1000"
selstr3 = """"elev" > 1000"""
print(selstr1 + "\n" + selstr2 + "\n" + selstr3)

⌨

In [ ]: #

⛬ Interpret the above, and provide other examples:

In [ ]:

"elev" > 1000



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 25/27

Using positions in strings
The .find()  method is useful for finding the first occurrence of a substring. Explore Python help on .find()
to find ways of finding something other than the first occurrence.

p = 'd:/work/lu.shp'
print(p.find('.'))
print(p[p.find('.'):])
print(p.split("/"))

⌨

In [ ]: #

⛬ Interpret the above:

Raw strings for dealing with backslashes
You could also convert backslashes to forward slashes, like UNIX uses for filepaths. But if you want to copy and
paste a long filepath from Windows, this is a pain.

⌨ So one solution is to create a raw string by prefacing it with an r  like the following:

print(r'd:\work\soil.shp')

Note that a backslash doesn't always produce a special character result; it depends on what follows it. Best
practice for filepaths is to always use r"..."  to create a raw string.

In [ ]: #

⛬ Interpret the above:

10
.shp
['d:', 'work', 'lu.shp']

Jerry's Kids

Jerry's
Kids



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 26/27

1.5 Logical Operators & Boolean Variables
Boolean (true or false) expressions and variables are very useful for testing conditions for conditional processing,
a structure we'll get to next. Boolean values are typically created using logical or binary operators. The result of
using a logical operator with two values is a Boolean value of true (1) or false (0). In Python 2.4, results display
as ‘true’ or ‘false’.

==  equal to (remember that a single =  is for assignment)
<  less than
>  greater than
!=  not equal to
<=  less than or equal to
>=  greater than or equal to

(there isn't a key on your keyboard to type in something like , , or ).

Then there are various Boolean operators for combining multiple Boolean values, like

& , and  Boolean AND (both must be true to return true)
| , or  Boolean OR (either can be true to return true)
not  Boolean NOT (reverses true or false, since 1 is True and 0 is False)

≥ ≠ ≤

x = 5
y = 2
print(x > y)
print(not (x > y))
print(x == y)

⌨

In [ ]: #

In [ ]: True & False

⛬ Interpret what the above is showing us.

True
False
False

Out[ ]: False



1/27/24, 2:48 PM Ex01_IntroPython_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex01_IntroPython_results.html 27/27

This is a little weird, but what does it show us?

print(2*(x>y))
j = (x>y)+(x==y)+(y>x)
print(j)

⌨

In [ ]: #

⛬ Interpret what the above is showing us.

And if you think this is just esoteric, you may be surprised at how useful this is for spatial analysis.

Now for a couple of Boolean operators:

print((x>y)|(y>x))
print((x>y)&(y>x))
print((x>y)|(x==y))
print(not (x==y))
print((x>y)|(-1*(x==y))==True)

⌨

In [ ]: #

⛬ Interpret what the above is showing us.

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

2
1

True
False
True
True
True



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 1/32

2.1 Working with modules
Python has a reasonable set of built-in methods for common programming tasks, but relies substantially on
modules for methods. Python comes installed with a large number of modules, which you can find described
online. Some of the more useful modules are math, sys, random, array and os.path.

There are also many modules you can download -- for example numeric processing, such as numpy -- but to find
the latest, do searches at www.python.org or google.

To use a given module, it must be imported first. You do a lot of importing modules in Python. Normally you would
put a line import at the top of your program. For instance:

import sys

would occur at the top of your program before you use any sys methods. It doesn't have to be the first line, just
before you use it. If you are entering commands through the console, then just do the import before you need to
use it.

Multiple modules, separated by commas, can be entered at one time, such as:

import sys, string, math, os, arcpy

For now, we'll explore some built-in modules.

➦ First, just run the following boilerplate code to allow multiple outputs from a cell:

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

math  and random  modules
Many common mathematical functions are accessed via the math module. For instance, you would need this for
trigonometric functions or logarithms. (To use complex numbers, use cmath which has similar functions, but
allows for complex number results.)

Try the following statements in the next code cell:

import math
print(math.log10(100))

Note that all module functions are prefaced with the module name. This allows for re-use of function names in
different modules.

⌨



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 2/32

In [ ]: #

print(math.log(100))  ⌨

In [ ]: #

❔ How is the above different from the previous? :

print(math.pi)  ⌨

In [ ]: #

❔ Other than what it returns how is math.pi  different from math.log() ? What do the parentheses indicate? :

pi = math.pi  print(pi)  pi  ⌨

In [ ]: #

❔ What does the above tell you about the print statement for variables? :

Note: the following cells relate to trigonometry, and they expect you to remember the types of units used for
measuring angles and how basic trigonometric functions work. You may want to review these.

sin = math.sin; cos = math.cos; tan = math.tan
sin(0)
cos(0)
sin(pi)
cos(pi)

⌨

2.0

4.605170185988092

3.141592653589793

3.141592653589793

Out[ ]: 3.141592653589793



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 3/32

In [ ]: #

⛬ There are several things to learn from the above code.

What did the first line do?

:

Look carefully at the output of sin(pi) . It's in computerese scientific notation where the e-16  is giving us
the power of 10, so this one should be something like  (and knowing what
value to expect from ) what value does this really represent?

:

1.2246467991473532 × 10−16

sin(π)

Let's consider angle unit conversions.

asin = math.asin; acos = math.acos; atan2 = math.atan2
sin(math.radians(45))
sin(45/180*pi)
math.degrees(asin(0.5))
asin(0.5)/pi*180

⌨

In [ ]: #

⛬ Interpret the results of the above code in terms of angle unit conversions:

:

For a module like math, the built-in help system may be useful for finding some quick information. Entering
help(math)  may help.

⌨

Out[ ]: 0.0

Out[ ]: 1.0

Out[ ]: 1.2246467991473532e-16

Out[ ]: -1.0

Out[ ]: 0.7071067811865476

Out[ ]: 0.7071067811865476

Out[ ]: 30.000000000000004

Out[ ]: 30.000000000000004



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 4/32

In [ ]:

⛬ Use the above to find help on something useful you weren't previously aware of in the math module.

:

Consider the following and envision how it might be useful in working with spatial problems:

x0 = 14; y0 = 8
x1 = 17; y1 = 12
dx = x1-x0; dy = y1-y0
h = (dx**2 + dy**2)**0.5
h
math.hypot(dx,dy)

⌨

In [ ]: #

⛬ Interpret what the above is showing us. :

The next graph using these data may help.

Out[ ]: 5.0

Out[ ]: 5.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 5/32

In [ ]: from matplotlib import pyplot
pyplot.plot([14,17,17,14],[8,8,12,8])

import random
print(random.random())
rnd = random.random
for i in range(5):
 print(rnd())

⌨

In [ ]: #

⛬ Interpret what the above is showing us.

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33a52640>]

0.5078208875118928
0.33065927005499385
0.33767419682200284
0.976511861465647
0.4266331853676444
0.007580517526020292



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 6/32

How about integers?

rndi = random.randint
for i in range(5):
 print(rndi(0,100))
for i in range(5):
 print(int(rnd()*100))

⌨

In [ ]: #

⛬ Interpret what the above is showing us.

How about a normal distribution?

mu = 50
s = 10
for i in range(10):
 print(random.gauss(mu, s))

⌨

In [ ]: #

57
79
19
22
60
11
6
24
44
82

40.0817300002313
58.860089693839356
36.97461795602848
65.74460501389359
42.35850155701855
61.27908385468605
37.605217033380484
38.59688917701296
25.039607376019987
74.712744232311



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 7/32

Sorting and frequency counting some random numbers
⌨

from random import random as rnd
mylist = []
for i in range(20):
   mylist.append(int(rnd()*10))
mylist    
mylist.sort()
mylist
for i in range(10):
   print("frequency of {}: {}".format(i, mylist.count(i)))

In [ ]: #

⛬ Interpret what the above is showing us.

:

In [ ]:

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

Out[ ]: [6, 3, 4, 2, 0, 5, 1, 7, 5, 2, 4, 6, 8, 6, 8, 7, 3, 6, 5, 2]

Out[ ]: [0, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8]

frequency of 0: 1
frequency of 1: 1
frequency of 2: 3
frequency of 3: 2
frequency of 4: 2
frequency of 5: 3
frequency of 6: 4
frequency of 7: 2
frequency of 8: 2
frequency of 9: 0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 8/32

2.2 Flow Control Structures: if, while, for
An important feature of any scripting or programming language is the ability to execute a set of statements as a
group, but under controlled conditions. From here on out, we'll want to write scripts and save them into a py
folder maybe in "pr". For each script use Ctrl-n or File New to create a new script. Maximize your IDE screen so
you can see both the script and the console (where outputs go). Then after composing it, save it to your py
folder, and run the script with the run button. In some cases, I'll suggest names for your scripts; otherwise make
one up.

There are three of these control flow operations:

operation when to operate

if Only execute the statements if a particular condition is true

while Keep executing (loop through) the set multiple times while a condition is true

for Loop through the set for each value in a range of values

These follow Python's clear syntax rules:

A colon is at the end of the initial statement.
The block of statements to be processed is indented.

Some important commonalities to these structures:

The if, while, and for statements all end in a colon, followed by an indented block of statements to be used under
the conditions defined by the if, while or for. In the code cell, you'll note that after you enter the line with a colon,
the next line will be indented. In the line following the code you want to run, backspace to get back to an
unindented section.



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 9/32

if
Scenario: You would like to create a series of hillshade rasters to represent summer, winter and equinox
conditions. The hillshade tool requires inputs of sun angle (the sun's maximum altitude in the sky on a given
day) and azimuth. The sun angle depends on the solar declination. You could look up values in a table, but why
not have the computer derive these from what you know? We'll start with a somewhat informed situation -- we
know the values for solar declination for four significant dates during the year:

significant date solar declination

June solstice (June 21 23.44

Equinox (Mar 21, Sept 21) 0

December solstice (Dec. 21) -23.44

⌨ Enter the following code that derives sun angle and azimuth from solar declination (the latitude where the
sun's rays are vertical at noon) and latitude. It starts with information to populate two variables, lat  (latitude for
the area of study, negative if south of the equator) and decl  (solar declination), and from these derives
sunangle  and azimuth :

lat = 30
decl = 20
sunangle = 90 - lat + decl
azimuth = 180
if sunangle > 90:
   sunangle = 180 - sunangle
   azimuth = 0
print(f"Noon sun angle {sunangle}, at azimuth {azimuth}")

(Note that we used an alternative formatted printing method, with f"..." ), working much the same as
"...".format()  but perhaps a bit easier to read in code, since the variable names appear where you use

them.)

In [ ]: #

Noon sun angle 80, at azimuth 180



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 10/32

For now, we've hard-coded the inputs of lat  and decl . In this case sunangle  would be assigned the value
80 since 90 - 30 + 20 is evaluated as 80. The next line assigns 180 to the variable azimuth . There's then a
section of statements that assigns new values to sunangle  and azimuth  if sunangle  ends up with value
greater than 90 after the first two lines are processed. Sun azimuth is either from the south (180) or from the
north (0) at solar noon.

Note the formatting of the if structure:

starts with if  followed by a Boolean expression ( sunangle > 90 ) as a condition followed by a colon :
the code that will run if the condition is true follows as an indented series of statements
the next indented code continues the program code: it runs whether or not the if structure runs (as long as
there's no error raised)

⌨ Here's a simple if structure that just prints out what it's doing:

print('\n\nStart of script...')
x = 5
if x > 0:
 print('In the "if" block, since x > 0 ...')
 print('Still in the indented "if" block ...')
print("Not indented -- we're at the next step in the script.")

In [ ]: #

⌨ Change the hard-coded x assignment to not run the if  block

In [ ]: #

Start of script...
In the "if" block, since x > 0 ...
Still in the indented "if" block ...
Not indented -- we're at the next step in the script.

Start of script...
Not indented -- we're at the next step in the script.



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 11/32

Using if  with files and folders

In GISci, we often need to work with data, so we'll explore some simple methods of accessing data using
relevant file paths, which is one application of flow control structures like if .

We just looked at using if to demonstrate running blocks of indented code using a condition. In the following, we'll
also explore another handy module, os.path .

➦ We'll start by using the operating system to set things up:

Create a data  folder in the folder where your jupyter files are being saved.
Then in the data folder create a text file "test.txt". You might want to make sure your folder is not hiding file
extensions (tools/folder options/view tab) so you don't create "test.txt.txt".

⌨ Try the following code. Make sure to indent the print statement.

import os.path
if os.path.exists("data"):
   print("data folder exists")

In [ ]: #

❔ Did the data folder exist? If not, did you remember to create it first?

In our code, we've made use of relative paths which is a good practice since it makes your code more portable.
However, it's common to need to access absolute paths, sometimes on a connected server, external drive, or
even on the same computer but in a different location. So we need to know how to work with absolute paths.

➦ Use your OS to find the path to the data  folder we just created. If you're not sure how to do this one way in
Windows at least is to click in the path area of of the file explorer window until it changes to display the path,
looking something like mine: C:\py\ex01\data .

⌨ Alter your code to read as follows, replacing my path with yours. Note the use of backslashes in the path:

import os.path
if os.path.exists("C:\py\ex01\data"):
   print("data folder exists")
else:
   print("data folder doesn't exist")

In [ ]: #

data folder exists

data folder doesn't exist



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 12/32

Interestingly, the code works fine, but this may be because the interpreter in the IDE is fixing things. You may find
that backslashes don't work in some IDEs since a backslash is interpreted as an "escape" character, with "\t"
representing a tab, etc., so I'm used to prefacing the path string with an r , so the path above would be
r"C:\py\ex01\data" .

⌨ You can also have other conditions to test if the first condition isn't met, using the elif statement. Note the use
of indentation.

import os.path
if os.path.exists(r"C:\py\ex01\data\test.txt"):
print("Test folder exists.")
   print("Text file exists.")
elif os.path.exists(r"C:\py\ex01\data"):
   print("Test folder exists")
   print("... but text file doesn't.")
else:
 print("Neither exist.")

In [ ]: #

while
⌨ Try the following code, which illustrates a while  loop:

i = 1
while i < 10:
   print(i)
   i = i + 1

In [ ]: #

Neither exist.

1
2
3
4
5
6
7
8
9



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 13/32

The last bit of code employs a variable as a "counter" to keep track of how many times we've gone through the
loop. Looking at the last statement we can clearly see that it represents an assignment, not a statement of
equality x  can never be equal to x + 1 , right? But we can assign a new value of x  to be one greater than its
previous value. This is a very basic but extremely important concept in programming; if you don't feel comfortable
with this, ask for help before you continue.

Note: The expression i < 10  can be evaluated as True  or False , so this allows us to process a set of code
after evaluating a condition. As we'll see, there are many situations where we will want to use conditional code --
a type of low-level decision that illustrates why we use computers

⌨ Try this code which is similar to the last:

i = 1
while i < 10:
   print(i)
   i += 1

The line i += 1  is just shorthand for i = i + 1 .

Note: an interesting experiment would be to un-indent the last line so it's not in the loop. But if you run it, you'll
want to interrupt the kernel using the black square, since you've created an infinite loop.

One advantage of the while loop is it lets us skip the whole section if the condition isn't met to begin with. It's
even tempting to use it instead of an if statement, but this is an easy way to get into an endless loop: the while
loop will keep repeating until the condition is false. When looping through datasets, a common task in GIS work,
the while  structure is often useful. We'll see some examples when we get to using the geoprocessor.

In [ ]: #

for
⌨ Try the following code, which illustrates a for loop:

for x in [1, 2, 3, 4]:
   msg = "Hello World"
   print(str(x) + " " + msg)

1
2
3
4
5
6
7
8
9



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 14/32

In [ ]: #

⌨ Replace the list [1, 2, 3, 4]  with range(4) .

❔ This will also run it four times, but how does it differ?

In [ ]: #

⌨ Note the use of lists and the len  function in the following.

featclasses = ["geology", "landuse", "publands"]
flds = ["TYPE-ID", "LU-CODE", "PUBCODE"]
for f in featclasses: print(f)
for j in range(len(featclasses)):
   print(j, featclasses[j], flds[j])

❔ What values do you get for j  and why?

:

In [ ]: #

1 Hello World
2 Hello World
3 Hello World
4 Hello World

0 Hello World
1 Hello World
2 Hello World
3 Hello World

geology
landuse
publands
0 geology TYPE-ID
1 landuse LU-CODE
2 publands PUBCODE



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 15/32

A very useful task for programming is to do something to every file (of a given type) in a folder. We might want to
reproject or clip every shapefile in a folder, for instance. We can use the os  package to look at file names and
identify the files with its extension, like .shp  for instance.

➦ Go to your data  folder and create some more text files, all ending with .txt . It doesn't matter what's in
them; we're just going to use them to provide a list.

⌨ Then use this code to list the names of the text files. You can imagine that we could then do something with
each file, but for now we're going to list them.

import os
print(os.getcwd())
ws = "data"
ilist=os.listdir(ws)
txtfiles = []   # Start with an empty list
for i in ilist:
   if i.endswith(".txt"):
      txtfiles.append(i)
txtfiles
for f in txtfiles:
   print(f)

In [ ]: #

Optional: If you have some shapefiles (including the various files that go with them), copy them into the data
folder and modify the code to list them. There's just one simple change to make in the code.

c:\Users\900008452\Box\course\625\exer\Ex02_LogicFlowIO

Out[ ]: ['untitled.txt']

untitled.txt



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 16/32

Combining a for  and an if
⌨ Use the sunangle code to complete the following, producing a list of monthly sun angles and azimuths from
the declinations provided (each at about the 21st of the month, starting with Dec 21), starting with empty
sunangles  and azimuths  lists and appending the values you derive.

lat = 37
decls = [-23.44,-20,-12,0,12,20,23.44,20,12,0,-12,-20]

.... code to complete, ending with the following list outputs ...

decls
sunangles
azimuths

In [ ]: #

Debug trick: toggling comments... A useful method to try in the code editor is toggling on and off
commenting on a section of code: just select anywhere in a single or multiple lines of code and
press Ctrl-/ . That toggles it on or off. This is very handy for checking variables before running
something that uses them. For the above code, try this out by commenting out the two .append
lines and inserting lines that just print the sunangle and azimuth. You can then toggle on and off
those print statements as well. So far, our code isn't very complicated, but if you practice this,
you'll find it really helpful as things get more challenging...

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

Out[ ]: [-23.44, -20, -12, 0, 12, 20, 23.44, 20, 12, 0, -12, -20]

Out[ ]: [29.56, 33, 41, 53, 65, 73, 76.44, 73, 65, 53, 41, 33]

Out[ ]: [180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180]



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 17/32

2.3 Creating functions with def
Somewhat similar to a module, but much simpler, is a function you define in your code to be used simply by
using the function name later in your code, and providing any parameters you want to use. The function can thus
be used as a variable in your program, by calling the function and returning the value specified by the return
command line in the function definition. This is easier to understand with an example, which creates a
distance()  function.

In [ ]: # boilerplate
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

⌨ The following code defines a distance()  function that uses the Pythagorean theorem to calculate the
straight line distance between any two UTM coordinates, which we'll provide as points a  and b .

def distance(pt0, pt1):
  import math
  dx = pt1[0] - pt0[0]
  dy = pt1[1] - pt0[1]
  return math.sqrt(dx**2 + dy**2)

The function name is distance  takes in two parameters, each of which is assumed to be a list or tuple
representing a coordinate pair of [x,y]  or (x,y) .

Note the importance of the return  command: In the R language, the value returned is simply the expression in
the defined function, so the last line would simply read dist , but Python requires you explicitly identify it with
the return  command line.

Note that the def  structure is similar to the flow control structures we just looked at: with a colon on the def
line and the lines of code indented.

In [ ]: #

⌨ Now create the inputs as two points a  and b  entered as hard-coded tuples, and process them with the new
function:

a = (520382, 4152373); b = (520782, 4152673)
distance(a, b)

In [ ]: #

Out[ ]: 500.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 18/32

⌨ Then try the same thing, creating c  and d , but create them as lists instead of tuples. Or with one a tuple,
the other a list; shouldn't matter.

In [ ]: #

⌨ A graph may help, and we'll jump ahead and use a little numpy and matplotlib. Feel free to copy and paste
this into the next code cell, since we haven't learned about numpy and matplotlib yet, so this isn't the time to
figure it out yet (unless you're really anxious...)

import matplotlib
import numpy as np
from matplotlib import pyplot as plt
x = np.array([a[0],a[0],b[0],a[0]])
y = np.array([a[1],b[1],b[1],a[1]])
fig, ax = plt.subplots()
plt.plot(x,y)
ax.axis('equal')
plt.text(*a,"a",size=24)
plt.text(*b,"b",size=24)
dXlab = (a[0],(b[1]-a[1])/2+a[1])
dYlab = ((b[0]-a[0])/2+a[0],b[1])
plt.text(*dXlab,"dX",size=24)
plt.text(*dYlab,"dY",size=24)

Out[ ]: 500.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 19/32

In [ ]: #

⌨

distance(pt1=(520782, 4152673), pt0=(520382, 4152373))

In [ ]: #

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33ac6e80>]

Out[ ]: (520362.0, 520802.0, 4152358.0, 4152688.0)

Out[ ]: Text(520382, 4152373, 'a')

Out[ ]: Text(520782, 4152673, 'b')

Out[ ]: Text(520382, 4152523.0, 'dX')

Out[ ]: Text(520582.0, 4152673, 'dY')

Out[ ]: 500.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 20/32

⌨ Modify the script to also return the angle in degrees between the two points. Note that we are using azimuth
type angles, with the 0° to the north and going around clockwise. rules for trigonometry-type Rename the
function to be distangle  and return as a tuple with return dist, angle. (Hint: use math.degrees  and
math.atan2(dx,dy) )

Note that we are using azimuth-type angles, used for mapping, with the 0° to the north and going around
clockwise, in contrast to the way you would have learned it in math classes with 0° to the right and going around
counter-clockwise. That's why we're specifying (dx,dy)  instead of (dy,dx)  as we would in standard use in
math classes. The azimuth in the triangle above is the angle at a .

In [ ]: #

⌨ Test it out a couple of ways:

distangle(a,b)
distangle(pt1=(520782, 4152673), pt0=(520382, 4152373))

In [ ]: #

In [ ]: #

⌨ Change the parameters for the distangle()  call to look instead like:

distangle(pt0=a, pt1=b)
distangle(pt1=b, pt0=a)
distangle(pt1=a, pt0=b)

In [ ]: #

Note the difference in order! Function parameters have a particular order, but if we name them we can provide
them in a different order.

Out[ ]: (500.0, 53.13010235415598)

Out[ ]: (500.0, 53.13010235415598)

Out[ ]: (500.0, 53.13010235415598)

Out[ ]: (500.0, 53.13010235415598)

Out[ ]: (500.0, -126.86989764584402)



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 21/32

Unpacking a list or tuple
Have a look at the script above where we used matplotlib to make a graph. (We'll be learning about matplotlib in
the next section.) You'll notice that the text-plotting commands do something unfamiliar with the point tuples a
and b  by specifying them as *a  and *b  (and similarly for dXlab  and dYlab )

plt.text(*a,"a",size=24)
plt.text(*b,"b",size=24)

We're seeing unpacking which is something we need to use with the pyplot .text  method which we can see by
requesting help on the method something like help(plt.text) , which works because we've imported
matplotlib.pyplot as plt . The required first three parameters of the .text  method are x, y, s  for the
coordinates followed by the text string to plot. To provide a  and b  as x , y  we need to unpack the tuple and
that's what *  does.

Here's another example of the same thing where we can apply our distangle()  function to add text showing
angles in degrees to a plot, and unpack the pt  tuple.

⌨ Again, feel free to just copy and paste this into the cell; we'll learn this stuff next week.

import matplotlib
import numpy as np
from matplotlib import pyplot as plt
origin = (0,0)
for pt in [(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)]:
   dist, angle = distangle(origin,pt)
   x = np.array([origin[0],pt[0]])
   y = np.array([origin[1],pt[1]])
   plt.plot(x,y)
   plt.text(*pt, str(angle % 360), size=18)



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 22/32

In [ ]: #

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b59c70>]

Out[ ]: Text(1, 0, '90.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b6b100>]

Out[ ]: Text(1, 1, '45.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33ab4f70>]

Out[ ]: Text(0, 1, '0.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b6b670>]

Out[ ]: Text(-1, 1, '315.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b6bb80>]

Out[ ]: Text(-1, 0, '270.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b7c070>]

Out[ ]: Text(-1, -1, '225.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33b7c4f0>]

Out[ ]: Text(0, -1, '180.0')

Out[ ]: [<matplotlib.lines.Line2D at 0x1ae33e14af0>]

Out[ ]: Text(1, -1, '135.0')



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 23/32

⛬ In the last line of code above, there are two parameters provided after *pt . Describe what's going on with
the next parameter and how that relates to what you see on the graph. Maybe experiment with changing it.

:

⌨ Let's change our functions to use four inputs to demonstrate the need for unpacking.

def dist(x1,y1,x2,y2):
  import math
  dx = x2 - x1
  dy = y2 - y1
  return math.sqrt(dx**2 + dy**2)

In [ ]: #

⌨ So to send our a  and b  points to dist() , we'll unpack them:

dist(*a, *b)

In [ ]: #

Unpacking a dictionary
Unpacking a dictionary is a little bit more complicated but has an interesting application for functions. It does
require that the dictionary use the variable names expected by the function. One advantage of this is in providing
inputs in a different order:

Since functions allow inputs to be provided in a different order by including their variable names, such as
dist(x1=0, x2=1, y1=5, y2=5)  working with the defined function where they are expected in a different

order:

def dist(x1,y1,x2,y2):

⌨ The following code illustrates this and shows the input provided by unpacking and the equivalent standard
input:

Xs = {"x1": 0, "x2": 1}
Ys = {"y1": 5, "y2": 5}
print("dictionary input: {}".format(dist(**Xs, **Ys)))
print("equivalent standard input: {}".format(dist(x1=0, x2=1, y1=5, y2=5)))

Out[ ]: 500.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 24/32

In [ ]: #

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

2.4 Input/Output
In this section we'll look at input and output methods, starting with user input and output displays, then input and
output of files.

Output display
We'll start with output, since we've already been using a variety of output methods, including expressions in code
cells, the print statement and formatted output using ".format  and f"  methods. We'll look at these in more
detail. For now, don't run the boilerplate we've been using, and if you have, then restart the kernel.

⌨ Let's start with the snippet of the sunangle code, and then make it more useful. We'll start with our example
where we "hard code" data directly into it by assigning variables. We'll print the results using the expression
method.

lat = 40
decl = 23.44
sunangle = 90 - lat + decl
azimuth = 180
if sunangle > 90:
   sunangle = 180 - sunangle
   azimuth = 0
sunangle
azimuth

In [ ]: #

dictionary input: 1.0
equivalent standard input: 1.0

Out[ ]: 73.44

Out[ ]: 180



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 25/32

Note that without the InteractiveShell setting in our boilerplate, you only get one output from a code cell, and that
will be the last expression in the code cell, so the azimuth .

⌨ One solution is to change the multiple expressions to one, but converted to a tuple with: sunangle, 
azimuth

In [ ]: #

⌨ Now change it back to two separate expressions, run the boilerplate, and then run the above code again to
see the difference.

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

In [ ]: #

This is still pretty minimal in the way of an output, since we have to figure out what expression produced each
output, and sometimes an expression output is missing some useful formatting.

⌨ For instance try this code that concatenates two strings and inserts a new line with \n , as an expression:

"To be or not to be?" + "\nThat is the question."

In [ ]: #

⌨ Now put that expression in a print()  statement to see the line, we'll see that line formatting:

In [ ]: #

Formatted output
⌨ Going back to our sunangle code, change the expressions to print statements.

Out[ ]: (73.44, 180)

Out[ ]: 73.44

Out[ ]: 180

Out[ ]: 'To be or not to be?\nThat is the question.'

To be or not to be?
That is the question.



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 26/32

In [ ]: #

Well, in this case that's really no different, since we're just printing a number, so you might think we could do
without that InteractiveShell  boilerplate and just insert multiple print statements, but we'll find when we get
to pandas that printing a dataframe isn't as nice looking as just putting the dataframe name as an expression,
allowing Jupyter to format it in a different way. But that's later; we'll continue now with formatted output using
either the ".format  or f"  method which we've used a bit before, but need to explore further.

We'll use a numerical format for floating point numbers:

For noon sun angle we'll specify a number occupying 5 spaces, and 2 decimal places with :5.2f
For azimuth we'll specify 3 spaces with 0 decimal places with :3.0f

⌨ Try both of these methods that should produce the same result:

print("Noon sun angle: {0:5.2f}°, at azimuth {1:3.0f}°".format(sunangle, azimuth))

or

print(f"Noon sun angle: {sunangle:5.2f}°, at azimuth {azimuth:3.0f}°")

In [ ]: #

Input
Now let's get away from the hard-coded input. We probably don't want to have to alter our program every time
we want to run it. There are a variety of ways of providing input. One way is to use the input  method.

⌨ Modify the code for getting the two inputs this way:

lat = float(input("Latitude: "))
decl = float(input("Solar Declination: "))

Look for a prompt when you run this for entering Latitude and Solar Declination.

In [ ]:

73.44
180

Noon sun angle: 73.44°, at azimuth 180°
Noon sun angle: 73.44°, at azimuth 180°

Noon sun angle: 72.0°, at azimuth 180.0°



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 27/32

Try this with different values (Don't type values into the code, but respond to the prompts). Valid
values of latitude are -90 to 90, while valid solar declination values are -23.44 to 23.44. Try -70
for latitude and 23.44 for declination to see what the sun angle would be at 70°S on the June
solstice. Interpret what the above is showing us.

Reading and Writing Text Files
A common need is to work with text files, especially CSV (comma separated variable) files that most
programming environments (and Excel) work with regularly.

Writing a text file
In this section, we'll start by hard-coding some data and writing it out to a text file, then we'll read in that text file.

Note: the first coding problem assumes you have previously created a data  folder. It doesn't matter what's in it,
but we'll need it to be there to create an output.

⌨ We'll start by simply displaying a set of three points each stored as tuples of values (id, name, x, y) , in
a container list, then just print these out:

ptData = [(1,"Trail Jct Cave",483986,4600852),
         (2,"Upper Meadow",483473,4601523),
         (3,"Sky High Camp",485339,4600001)]
for pt in ptData:
   print("{},{},{},{}".format(pt[0],pt[1],pt[2],pt[3]))

In [ ]: #

1,Trail Jct Cave,483986,4600852
2,Upper Meadow,483473,4601523
3,Sky High Camp,485339,4600001



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 28/32

Writing out a CSV text file is pretty easy using the csv  module and its methods .writer  that creates the
object that is opened by with open() , and .writerow  for writing the header row of field names, then
.writerows  for writing an interable list of row tuples. The newline=''  option is needed to avoid creating

extra line ends as carriage returns.

⌨ The complete script will need the creation of the ptData above followed by:

import csv
with open("data/marblePts.csv",'w', newline='') as out:
   csv_out=csv.writer(out)
   csv_out.writerow(['ID','Name','Easting','Northing'])
   csv_out.writerows(ptData)

In [ ]: #

➦ Check what you get by opening it in Excel. Once you've confirmed you got what you expected, close Excel.

You may have already discovered this, but a common problem with reading and writing data happens when two
programs are trying to access the same data, for instance if you have the CSV open in Excel and then try to write
it again from Python -- you'll get a message that it's locked, and it can be difficult to fix the problem, often
requiring closing out of both Jupyter and Excel, if not something more extreme.

Note the use of the with ...:  structure. It's handy because it sets up an environment that
applies only within the indented code of the structure. We'll see it again when working in arcpy to
apply environment settings that we only want to use within the structure.

Out[ ]: 13



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 29/32

Reading a text file
We'll just read in the text file we just wrote, a couple of different ways.

⌨ First we'll use the built-in methods.

infile = "data/marblePts.csv"
f = open(infile, "r")
firstline = True
for line in f:
   if firstline: firstline=False
   else:
       values = line.split(",")
       id = int(values[0])
       name = values[1]
       x = float(values[2])
       y = float(values[3])
       print("{},{},{},{}".format(id,name,x,y))
f.close()

In [ ]: #

Using csv
⌨ The csv module also has a reader method. A simple display of the data could work this way:

import csv
with open("data/marblePts.csv", newline="") as csvfile:
   dta = csv.reader(csvfile, delimiter=",")
   for row in dta:
       print(row)

In [ ]: #

Out[ ]: 'ID,Name,x,y\n'

1,Trail Jct Cave,483986.0,4600852.0
2,Upper Meadow,483473.0,4601523.0
3,Sky High Camp,485339.0,4600001.0

['ID', 'Name', 'x', 'y']
['1', 'Trail Jct Cave', '483986', '4600852']
['2', 'Upper Meadow', '483473', '4601523']
['3', 'Sky High Camp', '485339', '4600001']



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 30/32

⌨ What did the csv.reader  return: what does each row represent?

:

⌨ Modify the last line of code to instead display each line as a single string separated by commas with

", ".join(row)

In [ ]: #

⌨ We might take this a bit further and populate variables:

import csv
with open("data/marblePts.csv", newline="") as csvfile:
   dta = csv.reader(csvfile, delimiter=",")
   firstline = True
   for row in dta:
       if firstline: 
           row
           firstline=False
       else:
           id = int(row[0])
           name = row[1]
           x = float(row[2])
           y = float(row[3])
           print("{},{},{},{}".format(id,name,x,y))

In [ ]: #

Out[ ]: 'ID, Name, x, y'

Out[ ]: '1, Trail Jct Cave, 483986, 4600852'

Out[ ]: '2, Upper Meadow, 483473, 4601523'

Out[ ]: '3, Sky High Camp, 485339, 4600001'

Out[ ]: ['ID', 'Name', 'x', 'y']

1,Trail Jct Cave,483986.0,4600852.0
2,Upper Meadow,483473.0,4601523.0
3,Sky High Camp,485339.0,4600001.0



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 31/32

When we get to pandas we'll be working with dataframes which are a better way of working with tabular data like
this, and we'll learn about methods of reading and writing converting CSVs into dataframes and vice versa. So
we don't need to look at these methods much longer. But before we leave, you'll note that the code above
already knew the variable names, and how many they are. We might want to detect what those variables are, if
they're stored in the first row of the data.

⌨ This is a good use for a dictionary, which makes it easy to get variable names from strings we read from
somewhere, like the first line of the data/marblePts.csv  file. There's probably an easier way of doing this,
buth this works:

import csv
with open("data/marblePts.csv", newline="") as csvfile:
   dta = csv.reader(csvfile, delimiter=",")
   firstline = True
   for row in dta:
       if firstline:
           fields = row
           print(f"fields: {fields}")
           firstline=False
           marblePts=[]
           valueTuples=[]
       else:
           for i in range(len(fields)):
               valueTuples.append((fields[i],row[i]))
           marblePts.append(dict(valueTuples))
   marblePts

In [ ]: #

fields: ['ID', 'Name', 'x', 'y']

Out[ ]: [{'ID': '1', 'Name': 'Trail Jct Cave', 'x': '483986', 'y': '4600852'},
{'ID': '2', 'Name': 'Upper Meadow', 'x': '483473', 'y': '4601523'},
{'ID': '3', 'Name': 'Sky High Camp', 'x': '485339', 'y': '4600001'}]



1/27/24, 2:48 PM Ex02_LogicFlowIO_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex02_LogicFlowIO_results.html 32/32

⛬ Interpret some key features in the code above to make it work.

:

❔ What's the purpose of the statement firstline=False ?

:

❔ Why did we for i in range(len(fields)):  instead of something like for fld in fields:  which
would have also looped through the fields?

:

⌨ Provide some code that uses the marblePts data created. For instance, print out the Names, one per row.

In [ ]: #

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

Trail Jct Cave
Upper Meadow
Sky High Camp



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 1/30

3 Intro to NumPy and Matplotlib
We'll explore these together since Matplotlib gives us a nice way of visualizing our NumPy data, but we'll start by
using Matplotlib with list data.

In [ ]: # boilerplate
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Learning matplotlib
The matplotlib package does a lot. You will find that it's pretty much the only graphics system in Python, yet there
is an enormous amount of graphical work done with it. Different applications will use customized backends
developed in matplotlib, and each of these include specialized routines and ways of working, but all within
matplotlib. We will be focusing on just what we need to productively use the package, but you should refer to
http://matplotlib.org (http://matplotlib.org) for a lot more information. Much of the documentation is fairly cryptic,
but one quick way of getting a sense of what you can do is to explore examples at
https://matplotlib.org/stable/gallery/index.html (https://matplotlib.org/stable/gallery/index.html) where you can also
see the code that generates them.

For our first Matplotlib plot, we'll create a simple line plot from thee pairs of coordinates, with x coming from one
list and y from the other. We'll import the matplotlib  module and from it import the pyplot  interface (similar
to MATLAB), which includes the plot  function that plots a line plot by default.

import matplotlib
from matplotlib import pyplot
pyplot.plot([1,2,3],[4,5,1])

http://matplotlib.org/
http://matplotlib.org/
https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html


1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 2/30

In [ ]: #

A slightly more efficient way to start the plot is to import pyplot as plt

from matplotlib import pyplot as plt
plt.plot([1,2,3],[4,5,1])

⌨ Change your code to read as above, and then add a second line feature to the plt  object with:

plt.plot([2,3,4],[3,4,0])

Note that the axes expanded a bit to include the new feature.

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbb224c0>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 3/30

In [ ]: #

⌨ Change .plot  to .scatter  to create points instead of lines.

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbf9a190>]

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbf9ae50>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 4/30

In [ ]: #

⌨ Now change both methods back to .plot , but after the y coordinates list add a third parameter 'bo'  to
the first to make blue solid circles and to the sevcond 'ro'  to make red solid circles.

Out[ ]: <matplotlib.collections.PathCollection at 0x1ecdbbd9130>

Out[ ]: <matplotlib.collections.PathCollection at 0x1ecdbbd9610>



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 5/30

In [ ]: #

Matplotlib expects numpy arrays as input or objects that can be converted to such with numpy.asarray()  so in
the first plot, this was happening behind the scene -- the simple lists were converted to numpy arrays. This is
what it looks like more explicitly:

import numpy
from matplotlib import pyplot as plt
plt.plot(numpy.asarray([1,2,3]),numpy.asarray([4,5,1]))

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbf1d070>]

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbb66040>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 6/30

In [ ]: #

⌨ Change the above to create green triangles with 'g^'

Out[ ]: [<matplotlib.lines.Line2D at 0x1eecd74b9a0>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 7/30

In [ ]: #

There's a lot to Matplotlib and the pyplot methods.

➦ Refer to the cheatsheets and guides at https://matplotlib.org/cheatsheets/ (https://matplotlib.org/cheatsheets/)

NumPy
Ok, we jumped ahead a bit there, so we should formally introduce NumPy. There's a fair amount you can learn
about NumPy, "the fundamental package for scientific computing in Python"
(https://numpy.org/doc/stable/user/whatisnumpy.html (https://numpy.org/doc/stable/user/whatisnumpy.html)), but
we're only going to need to explore a relatively small part of it.

Out[ ]: [<matplotlib.lines.Line2D at 0x1eece81c760>]

https://matplotlib.org/cheatsheets/
https://matplotlib.org/cheatsheets/
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html


1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 8/30

Introduction to ndarray  objects
These n-dimensional arrays are at the core of NumPy. Here are some of their characteristics:

They are immutable, having a fixed size when you create them. If you change their size, a new one will
actually be created.
The elements must all be of the same type. You might imagine these to be numerical, but the elements can
actually be objects of a complex structure, just each object has the same structure of every other one in the
array.
They facilitate numerical operations, allowing them to execute efficiently, so have been adopted by many
applications that use Python (such as ArcGIS) to crunch large data sets.
Mathematical operations use vectorization methods (similar to R), with element-by-element operations
coded simply. Say you have two ndarrays a and b (or one could be a constant or scalar variable) -- to
multiply them simply requires c = a * b
They can have more than one dimension, and the dimensions of ndarrays are called axes

The analogous data structure in R is a vector, which can also have multiple dimensions, where
they're called matrices or arrays, and similarly all elements must be the same type.

So let's create some:

⌨ While not required, it's good practice for code readability to standardize on the main numpy object name and
call it np , so starting our code with import numpy as np  is what we'll do. We'll start by creating a mixed-type
list, then try to build an array out of it.

import numpy as np
mixedList = [1, "x", 5]
myArray = np.asarray(mixedList)

In [ ]: #

⌨ That worked, but what did we get?

myArray

In [ ]: #

Out[ ]: array(['1', '3', '5'], dtype='<U11')



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 9/30

Note that the dtype (data type) is <U11 , for which "U" refers to the unicode character data type,
with 11 part just referring to how many characters are in the string (and oddly 11 is the minimum).
When I first saw this, I thought the 11 referred to the number of bits, but if you put a string longer
than 11 characters in there, you'll find it uses a larger number. A while back, the main character
coding system used was ASCII, which stands for "American Standard Code for Information
Interchange" and it was a 7-bit code, capable of handling all of the Latin characters ('a':'z','A':'Z')
used in the U.S. (thus American standard code), Arabic numerals ('0':'9'), and other things
typically on your keyboard, and some special needs like line ends and tabs. That was fine for
normal computing where computer languages used English anyway, but hampered the use of
quite a few other languages with different characters. In the first extension of this to 8 bits, Greek
was added first, though mostly for mathematical symbols, and also accented letters like é (which
I typed using Alt 130 on the numeric keypad). Unicode expands this to character sets in all kinds
of other languages.

But back to numeric arrays...

Creating an ndarray with np.arange()
We'll then create something similar to what we used on base Python as range(12)  which returns a list, instead
using np.arange(12)  which returns an ndarray with one axis.

import numpy as np
a = np.arange(12)
a

In [ ]: #

Setting the dimensions with .reshape()
⌨ Use the .reshape()  method to change the dimensions of the ndarray, and check the shape , ndim ,
size , and dtype  properties:

a = a.reshape(3,4)
a
a.shape
a.ndim
a.size
a.dtype

Out[ ]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 10/30

In [ ]: #

As we just saw, not only is the array numerical, but it's of a given type, int32 , so an integer occupying 32 bits
of memory each. Remember that each element in an ndarray has the same size.

⌨ Let's use a little vectorization to see what happens if we convert to a different data type:

b = a * 1.5
b
b.dtype

In [ ]: #

Creating an ndarray from a collection: np.array()
⌨ To create an ndarray from a collection of values, use the array  method. The array method takes a single
input (though it also accepts parameters such as dtype), which is a list or tuple of objects. Note that the dtype is
determined based upon what values are provided, with the most efficient type chosen if all elements work. A
typical example is integer favored over float, but only if all objects provided as inputs are integers.

b = np.array([1,2,3])
b
b.dtype

In [ ]: #

Out[ ]: array([[ 0,  1,  2,  3],
      [ 4,  5,  6,  7],
      [ 8,  9, 10, 11]])

Out[ ]: (3, 4)

Out[ ]: 2

Out[ ]: 12

Out[ ]: dtype('int32')

Out[ ]: array([[ 0. ,  1.5,  3. ,  4.5],
      [ 6. ,  7.5,  9. , 10.5],
      [12. , 13.5, 15. , 16.5]])

Out[ ]: dtype('float64')

Out[ ]: array([1, 2, 3])

Out[ ]: dtype('int32')



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 11/30

⌨ One float creates a float...

c = np.array([1,2.0,3])
c
c.dtype

In [ ]: #

⌨ Tuple:

t = np.array((1,2.0,3))
t
t.dtype

In [ ]: #

So there's no difference between a numpy array created from a list than created from a tuple.
Dictionaries are a little different, and are created as objects.

⌨ Dictionary:

d = np.array({"first":1.0, "second":4.2, "third": 0.5})
d
d.dtype

In [ ]: #

Out[ ]: array([1., 2., 3.])

Out[ ]: dtype('float64')

Out[ ]: array([1., 2., 3.])

Out[ ]: dtype('float64')

Out[ ]: array({'first': 1.0, 'second': 4.2, 'third': 0.5}, dtype=object)

Out[ ]: dtype('O')



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 12/30

Simple element-wise mathematical operations
⌨ See what you get by multiplying each of the above ndarrays by 2 (e.g. 2 * b ) and adding them together,
etc.

In [ ]: #

The array  method transforms collections of collections into 2D arrays, collections of collections of collections
for 3D, etc.

Special ndarrays: zeros  and ones
⌨ Zeros and ones are often useful, either as placeholders to be replaced with other values, or a simple way to
produce False  and True  values. Note that these functions let you dimension the arrays when you create
them, using either a list or tuple -- the result is no different.

np.zeros([3,4])
np.ones((3,4))

In [ ]: #

Out[ ]: array([2., 4., 6.])

Out[ ]: array([0., 0., 0.])

Out[ ]: array([1., 1., 1.])

Out[ ]: array([[0., 0., 0., 0.],
      [0., 0., 0., 0.],
      [0., 0., 0., 0.]])

Out[ ]: array([[1., 1., 1., 1.],
      [1., 1., 1., 1.],
      [1., 1., 1., 1.]])



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 13/30

Math functions in numpy
NumPy functions are needed to provide mathematical functions of ndarrays. The math  module only works with
scalars, so we'll need to use NumPy functions instead.

⌨ So let's use the NumPy variety of a trig function.

np.sin(a)

⌨ However the built-in Python arithmetic operators work with ndarrays.

a**2

In [ ]: #

Statistical summaries of ndarrays
⌨ There are some useful statistical summaries that apply to the entire collection in the ndarray.

a.sum()
a.min()
a.max()
a.mean()
a.var()**0.5 # sd

In [ ]: #

Out[ ]: array([[ 0.        ,  0.84147098,  0.90929743,  0.14112001],
      [-0.7568025 , -0.95892427, -0.2794155 ,  0.6569866 ],
      [ 0.98935825,  0.41211849, -0.54402111, -0.99999021]])

Out[ ]: array([[  0,   1,   4,   9],
      [ 16,  25,  36,  49],
      [ 64,  81, 100, 121]], dtype=int32)

Out[ ]: 66

Out[ ]: 0

Out[ ]: 11

Out[ ]: 5.5

Out[ ]: 3.452052529534663



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 14/30

Random numbers
There's a lot to the world of probability and statistics, and students are referred to those courses and that
literature for learning more. Generating random numbers (or rather pseudo-random numbers) is an important
part of that. We'll just use a couple of common methods -- creating uniform and normally distributed random
numbers -- but you should refer to https://numpy.org/doc/stable/reference/random/index.html
(https://numpy.org/doc/stable/reference/random/index.html) for more NumPy methods for this.

⌨ Create an 2x3 ndarray of uniform random numbers with

np.random.rand(2,3)

In [ ]: #

Using a random number seed

If you want to create the same sequence of random numbers for repeatability, you can set a random number
seed. The advantage of a seed is reproducibility; you'll always get the same sequence of random numbers for a
given seed. The source https://numpy.org/doc/stable/reference/random/index.html
(https://numpy.org/doc/stable/reference/random/index.html) recommends using the default_rng  (random
number generator) which has one parameter: the random number generator "seed". We'll use this for the
following random number problems and use 42 , the answer to everything according to The Hitchhiker's Guide
to the Galaxy (Douglas Adams (1978)).

To initiate the random number generator as r  with a seed, we use the .default_rng  method of np.random :
⌨

r = np.random.default_rng(42)

In [ ]: #

From there any call to r  to access random numbers will follow the sequence initiated. (To start an identical
sequence again, just run the r  assignment above again.)

r = np.random.default_rng(42)
r.random(5)
r = np.random.default_rng(42) # to restart the same sequence
print("This should be the same as above:")
r.random(5)
print("But this continues the generation:")
r.random(5)

Out[ ]: array([[0.42818175, 0.38804206, 0.9714968 ],
      [0.63946514, 0.76844697, 0.63632965]])

https://numpy.org/doc/stable/reference/random/index.html
https://numpy.org/doc/stable/reference/random/index.html
https://numpy.org/doc/stable/reference/random/index.html
https://numpy.org/doc/stable/reference/random/index.html


1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 15/30

In [ ]: #

From here on, we'll either use r  object to create random numbers from this seed or use
np.random  if we don't care about the seed, so for exammple we might do one or the other of

the following to generate an ndarray of 5 uniformly distributed random numbers:

r.random(5)
np.random.random(5)

In [ ]: #

⌨ Let's use reshape to create a random set of XY values from a random 1D:

xy_data = r.random(12).reshape(6,2)
xy_data

Then extract the X and Y values as arrays.

xdata = xy_data[:,0]
ydata = xy_data[:,1]
xdata, ydata

A set of random numbers using that seed of 42:

Out[ ]: array([0.77395605, 0.43887844, 0.85859792, 0.69736803, 0.09417735])

This should be the same as above, since we restarted the rng:

Out[ ]: array([0.77395605, 0.43887844, 0.85859792, 0.69736803, 0.09417735])

But this continues the generation:

Out[ ]: array([0.97562235, 0.7611397 , 0.78606431, 0.12811363, 0.45038594])

Out[ ]: array([0.37079802, 0.92676499, 0.64386512, 0.82276161, 0.4434142 ])

Out[ ]: array([0.12805638, 0.07960468, 0.5564425 , 0.93766976, 0.61591846])



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 16/30

In [ ]: #

⛬ After you've experiment with the above code, interpret the use of accessors in xy_data[:,0] :

:

⌨ Create a scatterplot of 30 random points (just use a 1D ndarray), with x values ranging from 20 to 30 and y
values ranging from 40 to 50. The basic algorithm for this is r * (max-min) + min  if r  is a random number
(or an array of random numbers) between 0 and 1, the minimum value is min , the maximum value is max .

In [ ]: #

Out[ ]: array([[0.37079802, 0.92676499],
      [0.64386512, 0.82276161],
      [0.4434142 , 0.22723872],
      [0.55458479, 0.06381726],
      [0.82763117, 0.6316644 ],
      [0.75808774, 0.35452597]])

Out[ ]: (array([0.37079802, 0.64386512, 0.4434142 , 0.55458479, 0.82763117,
       0.75808774]),
array([0.92676499, 0.82276161, 0.22723872, 0.06381726, 0.6316644 ,
       0.35452597]))

Out[ ]: <matplotlib.collections.PathCollection at 0x1eece877e20>



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 17/30

Normally distributed random numbers

⌨ We can also create normally distributed random numbers. Here are two ways of creating one using the
standard method of z scores (with a mean of 0 and a standard deviation of 1) within a 5x5 ndarray:

the first using the normal method which uses the parameters loc  for mean, scale  for standard deviation,
and size  for sample size (including structure as a tuple if desired) with the usage normal(loc=0.0, 
scale=1.0, size=None) , so if we want to default to the mean and standard deviation, we need to use a
specific size reference:

r.normal(size=(5,5))

the second using standard_normal  which uses those same defaults and just needs the size, so
parameter specificity isn't required:

r.standard_normal((5,5))

In [ ]: #

In [ ]: #

⌨ Specifying a different mean and standard deviation is pretty easy with np.random.normal :

mu, sigma = 100, 10  # mean and standard deviation
print(f"The mean (\u03BC 'mu') is {mu} and the standard deviation (\u03C3 'sigma') 
is {sigma}.")
r.normal(mu,sigma, (2,12))

Out[ ]: array([[-1.44711247, -1.32269961, -0.99724683,  0.39977423, -0.90547906],
      [-0.37816255,  1.2992283 , -0.35626397,  0.73751557, -0.93361768],
      [-0.20543756, -0.95002205, -0.33903308,  0.84030814, -1.72732042],
      [ 0.43442364,  0.2377356 , -0.59414996, -1.44605785,  0.07212951],
      [-0.52949271,  0.23267621,  0.02185215,  1.60177889, -0.23935563]])

Out[ ]: array([[ 0.43442364,  0.2377356 , -0.59414996, -1.44605785,  0.07212951],
      [-0.52949271,  0.23267621,  0.02185215,  1.60177889, -0.23935563],
      [-1.02349749,  0.17927563,  0.21999668,  1.35918758,  0.83511125],
      [ 0.35687106,  1.46330289, -1.18876305, -0.63975153, -0.92657594],
      [-0.3898098 , -1.37668615,  0.63515095, -0.2222227 , -1.47080629]])



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 18/30

In [ ]: #

⌨ Create a scatter plot of 100 normally distributed random x and y values (again just using 1D arrays), using
the above mu and sigma values for both spatial dimensions.

In [ ]: #

The mean (μ 'mu') is 100 and the standard deviation (σ 'sigma') is 10.

Out[ ]: array([[ 91.23139222,  99.05737446,  82.42271609,  85.32954755,
       121.29247112,  87.12577419,  89.03214422, 118.36913528,
       129.05067169,  88.28433371,  96.31751043, 103.41555551],
      [117.28697644,  90.13142922,  97.54722154, 107.77337576,
       104.34766074,  96.23843929,  98.66177035,  86.25104192,
        97.61826256,  97.3361251 , 102.3216989 ,  94.44672781]])

Out[ ]: <matplotlib.collections.PathCollection at 0x1eece8f23d0>



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 19/30

Histogram.
⌨ Here's some code that creates a histogram. It's straightforward.

import numpy as np
mu, sigma = 100, 10  #
s = np.random.normal(mu, sigma, 1000)
plt.hist(s, 30, color="blue")
plt.show()

In [ ]: #

Out[ ]: (array([ 1.,  2.,  1.,  1.,  6., 15., 18., 27., 39., 57., 57., 76., 85.,
       94., 81., 77., 76., 71., 63., 45., 40., 24., 11., 10., 10.,  6.,
        4.,  2.,  0.,  1.]),
array([ 67.97687354,  70.21905859,  72.46124363,  74.70342868,
        76.94561373,  79.18779878,  81.42998383,  83.67216888,
        85.91435393,  88.15653898,  90.39872402,  92.64090907,
        94.88309412,  97.12527917,  99.36746422, 101.60964927,
       103.85183432, 106.09401936, 108.33620441, 110.57838946,
       112.82057451, 115.06275956, 117.30494461, 119.54712966,
       121.78931471, 124.03149975, 126.2736848 , 128.51586985,
       130.7580549 , 133.00023995, 135.242425  ]),
<BarContainer object of 30 artists>)



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 20/30

Density plot
⌨ Creating a density plot is more complicated, so here's that completed code that you can puzzle at.

count, bins, ignored = plt.hist(s, 30, density=True, color="blue")
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        np.exp( - (bins - mu)**2 / (2 * sigma**2) ), 
        linewidth=2, color='r')
plt.show()

In [ ]: #

Creating plots from 2D ndarrays
⌨ We'll create a 2D array and then use its two dimensions (0 and 1) as inputs to create a plot:

xy = np.array([(5,8,10),(12,16,6)])
print(xy)
plt.plot(xy[0],xy[1])

Out[ ]: [<matplotlib.lines.Line2D at 0x1eecea510d0>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 21/30

In [ ]: #

⌨ Let's convert the axes of our 2D array to create 1D arrays, then add a bit to our Matplotlib skills by creating a
title and label axes names:

x=xy[0]
type(x)
x.ndim
y=xy[1]
plt.plot(x,y)
plt.title('My Data')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()

Out[ ]: array([[ 5.,  8., 10.],
      [12., 16.,  6.]])

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdbfc4eb0>]



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 22/30

In [ ]: #

Creating a raster of XY locations with np.meshgrid()
This might seem like an odd thing to do, but it's useful: Create a grid (like a raster) that stores the X coordinate
as its (Z) value, and at the same time create one that stores the Y coordinate as its (Z) value. ⌨ Best seen by
trying it:

[X,Y] = np.meshgrid(np.arange(5),np.arange(5))
X
Y

Out[ ]: numpy.ndarray

Out[ ]: 1

Out[ ]: [<matplotlib.lines.Line2D at 0x1ecdc039850>]

Out[ ]: Text(0.5, 1.0, 'My Data')

Out[ ]: Text(0, 0.5, 'Y axis')

Out[ ]: Text(0.5, 0, 'X axis')



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 23/30

In [ ]: #

❔ If we're looking at these 2D ndarrays as a raster, where's the origin? [What's the meaning of origin as x and y
values in any 2-dimensional graph?]

:

One application of this is to create simulated rasters or to support mathematical transformation of real DEM
rasters, as we used in a waveform landform study applying Fourier transforms:

Davis & Chojnacki (2017). Two-dimensional discrete Fourier transform analysis of karst and coral reef
morphologies. Transactions in GIS 21(3). DOI 10.1111/tgis.12277 .
https://www.researchgate.net/publication/316702784_Two-
dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNAC
(https://www.researchgate.net/publication/316702784_Two-
dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNAC

Meshgrids for mathematical functions

⌨ We'll use a plot function for making a 3D plot...

def plot3d(array2d, label):
   fig = plt.figure()
   # old code : ax = fig.gca(projection='3d')
   ax = plt.axes(projection ='3d')
   surf = ax.plot_surface(X, Y, array2d)
   ax.set_zlim(-1.01, 1.01)
   plt.title(label)
   plt.show()

In [ ]: #

Out[ ]: array([[0, 1, 2, 3, 4],
      [0, 1, 2, 3, 4],
      [0, 1, 2, 3, 4],
      [0, 1, 2, 3, 4],
      [0, 1, 2, 3, 4]])

Out[ ]: array([[0, 0, 0, 0, 0],
      [1, 1, 1, 1, 1],
      [2, 2, 2, 2, 2],
      [3, 3, 3, 3, 3],
      [4, 4, 4, 4, 4]])

https://www.researchgate.net/publication/316702784_Two-dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNACKI
https://www.researchgate.net/publication/316702784_Two-dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNACKI
https://www.researchgate.net/publication/316702784_Two-dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNACKI
https://www.researchgate.net/publication/316702784_Two-dimensional_discrete_Fourier_transform_analysis_of_karst_and_coral_reef_morphologies_DAVIS_and_CHOJNACKI


1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 24/30

⌨ ... then use this to plot a function.

[X,Y] = np.meshgrid(np.arange(-5,5,0.1), np.arange(-5,5,0.1))
f = np.sin(X**2 + Y**2)/(X**2 + Y**2)
plot3d(f,label=f"sin(X\u00b2 + Y\u00b2) / (X\u00b2 + Y\u00b2)")

In [ ]: #

⌨ Change the code to display the cosine instead, and increase the range width from -10 to 10, same steps.



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 25/30

In [ ]: #

In [ ]:

Reading in coordinates and plotting data
We'll see better methods when we get to pandas and Geopandas, but it is possible to read in coordinates and
data into a 2D ndarray from a spreadsheet, in our case "npdata/exported_ptdata.csv" . We're going to be
interested in 3 variables: X , Y , and CATOT , so we'll need to know where they are in the csv file.

⌨ We'll start with a fairly simple way to read the first line to get the field names as a list. The following code
opens the data, removes any spaces (hopefully we don't have any in our field names), splits the line of text at
comma delimiters to create a list, then displays and closes the file.

f = open("npdata/exported_ptdata.csv", "r")
fields = f.readline().replace(" ","").split(",")
fields
f.close()



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 26/30

In [ ]: #

➦ But for a better view of the data, open the exported_ptdata.csv  from the npData  folder into Excel.

❔ Knowing how Python counts things, what column numbers are X , Y , and CATOT  in?

:

➦ Close the file in Excel so you don't create a schema lock error (where two programs are trying to access the
same data at the same time.)

⌨ We'll skip the header line with variable names, and read into an ndarray using the comma delimiter.

from numpy import genfromtxt
my_data = genfromtxt('npData/exported_ptdata.csv', delimiter=',',skip_header=1)
my_data.ndim
my_data

Out[ ]: ['X',
'Y',
'FID',
'AREA',
'PERIMETER',
'SAMPLES_',
'SAMPLES_ID',
'CATOT',
'MGTOT',
'ALK',
'SIO2',
'PH',
'TEMP',
'PCO2',
'IONSTR',
'TDS',
'CMOL',
'IONERR',
'CATXS',
'SATCALC',
'SATDOLO',
'SATQU',
'SATCX_5',
'SATCBLAC',
'NEGERR',
'CO2PERC',
'NEGPCO2\n']



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 27/30

In [ ]: #

From this, we can see that the data is an ndarray with 2 axes.

⌨ To populate X, Y, and Ca (we'll use the element symbol instead of CATOT), we need to replace the underline
in the following with the position of the field in the list of fields. I'll give you the first one.

X = my_data[:,0]

Y = my_data[:, _ ]

Ca = my_data[:, _ ]

In [ ]: #

⌨ Now we'll build the plot, starting with importing the module and selecting a style.

from matplotlib import pyplot as plt
from matplotlib import style
style.use('ggplot')

In [ ]: #

Some of the settings are specific to the plot itself and some are for the figure as a whole. The plot itself uses
"axes" and typically a subplot is defined called ax , and if two separate y axes are used, might be created as
ax1 and ax2. To see what is created by default we can see what is returned by:

plt.subplots()

Out[ ]: 2

Out[ ]: array([[ 4.85701969e+05,  4.60295000e+06,  0.00000000e+00, ...,
        9.17000000e+00,  1.95000000e-01, -2.71000000e+00],
      [ 4.85956281e+05,  4.60294450e+06,  1.00000000e+00, ...,
        6.01000000e+00,  1.38000000e-01, -2.86000000e+00],
      [ 4.85589781e+05,  4.60293400e+06,  2.00000000e+00, ...,
       -1.19400000e+01,  2.51000000e-01, -2.60000000e+00],
      ...,
      [ 4.84966031e+05,  4.60018550e+06,  5.90000000e+01, ...,
       -6.51900000e+01,  6.00000000e-03, -4.21000000e+00],
      [ 4.85371469e+05,  4.59999550e+06,  6.00000000e+01, ...,
        8.07600000e+01,  4.30000000e-02, -3.37000000e+00],
      [ 4.84911094e+05,  4.59972650e+06,  6.10000000e+01, ...,
        7.74600000e+01,  2.60000000e-02, -3.59000000e+00]])



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 28/30

In [ ]: #

... which should show an empty default plot, but as you can see returns a tuple: (<Figure size 432x288 with 
1 Axes>, <AxesSubplot:>)

... so we can assign the figure and axis to fig, ax  using the method we've used before:

fig, ax = plt.subplots()

In [ ]: #

Out[ ]: (<Figure size 432x288 with 1 Axes>,
<matplotlib.axes._subplots.AxesSubplot at 0x1f8f9f57388>)



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 29/30

Then we can create a scatter plot and legend by referencing the ax  subplot. We'll set the color ( c= ) to the
variable Ca  and color map ( cmap= ) to a yellow-orange-brown sequence "YlOrBr" .

scatter = ax.scatter(X,Y,c=Ca,cmap=("YlOrBr"))
legend1 = ax.legend(*scatter.legend_elements(),
                   loc="lower right", title="Ca mg/L")

In [ ]: #

To make the scatterplot plot like a map, we can just set the UTM coordinates (in metres) to have equally scaled
axes, and then add a title to the overall figure ( fig.suptitle ) and the plot ( ax.set_title ).

ax.axis('equal')
ax.set_title("Calcium concentrations")
fig.suptitle("Marble Mountains, CA")

In [ ]: #

Matplotlib elements: put it all together

Take all of the code starting from:

from numpy import genfromtxt

down to here and put it all in one code cell, below. To get this all to display in Jupyter, we need to have the fig, ax
setting in the same code cell (I don't completely understand why), so we'll include all of the code that reads the
data and creates the plot. End it by writing out the figure as a (default) .png with:

plt.savefig("MarbleCA")

... which will save it in the same folder where this .ipynb  file resides.

Out[ ]: (482578.3984375, 486117.1328125, 4599565.325, 4603111.175)

Out[ ]: Text(0.5, 1.0, 'Calcium concentrations')

Out[ ]: Text(0.5, 0.98, 'Marble Mountains, CA')



1/27/24, 2:49 PM Ex03_NumPyMatplotlib_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex03_NumPyMatplotlib_results.html 30/30

In [ ]: #

➦ Again, there's a lot more to Matplotlib (as well as NumPy), so if you have time I'd recommend going through
the Basic, Pyplot and Image tutorials at https://matplotlib.org/stable/tutorials (https://matplotlib.org/stable/tutorials)

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

Out[ ]: (482578.3984375, 486117.1328125, 4599565.325, 4603111.175)

Out[ ]: Text(0.5, 1.0, 'Calcium concentrations')

Out[ ]: Text(0.5, 0.98, 'Marble Mountains, CA')

https://matplotlib.org/stable/tutorials
https://matplotlib.org/stable/tutorials


1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 1/52

Introduction to Pandas

In this section we'll be taking a look at the powerful data analysis python library called pandas. We'll start by
creating some dataframes. Then we'll explore various methods and properties available to us to access data
within our dataframes.

⌨ Enter the code below in your first cell, and since we'll also be using numpy, include that as well as pandas:

import pandas as pd
import numpy as np

In [ ]: #

☑ Run the boilerplate that provides multiple outputs per cell:

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Pandas data structures

Series
⌨ We'll start by building three series of data in code for selected weather stations in the Sierra, with temperature
representing February normal temperatures. This example illustrates one way of building a dataframe (and
happens to be similar to how you'd do it in R, but instead of calling them "vectors" we'll call them "series"). We'll
then display one to see what a series looks like. The data we're entering here are all in the same order based on
the weather station they come from, but we'll use either lists or tuples. We'll see their names shortly.

import pandas as pd
elevation = pd.Series([52, 394, 510, 564, 725, 848, 1042, 1225, 1486, 1775, 1899, 2
551])
latitude = pd.Series([39.52, 38.91, 37.97, 38.70, 39.09, 39.25, 39.94, 37.75, 40.3
5, 39.33, 39.17, 38.21])
temperature = pd.Series((10.7, 9.7, 7.7, 9.2, 7.3, 6.7, 4.0, 5.0, 0.9, -1.1, -0.8, 
-4.4)) # tuple also works, effect is same



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 2/52

In [ ]: #

Note that when we instantiate the series, the numeric indices are automatically created.

⌨ We can even create a series with a range of values or random numbers.

pd.Series(np.arange(5))

In [ ]: #

⌨ ... or a constant ...

twos = pd.Series(2, index=range(5))
twos

In [ ]: #

❔ What would you have gotten without the index setting, just pd.Series(2) ? (First think of a likely answer,
then try it.)

:

Out[ ]: 0     10.7
1      9.7
2      7.7
3      9.2
4      7.3
5      6.7
6      4.0
7      5.0
8      0.9
9     -1.1
10    -0.8
11    -4.4
dtype: float64

Out[ ]: 0    0
1    1
2    2
3    3
4    4
dtype: int32

Out[ ]: 0    2
1    2
2    2
3    2
4    2
dtype: int64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 3/52

⌨ ... or some random numbers. The following creates r  as a random number generator (rng) with a seed of
42.

r = np.random.default_rng(seed=42)
pd.Series(r.random(10))

In [ ]: #

Series from a dictionary
Dictionaries are used a lot in Pandas, so let's instead instantiate a series from a dictionary.

⌨ We'll build an elev series this way, using the station name as the key for the index. Note that we'll create a
new series of elevation, but name it elev  to retain both versions since we'll use each type below when we're
building dataframes. We'll do the same for latitude ( lat ) and temperature ( temp ).

elevDict = {"Oroville":52,
           "Auburn":394,
           "Sonora":510,
           "Placerville":564,
           "Colfax":725,
           "Nevada City":848,
           "Quincy":1042,
           "Yosemite":1225,
           "Sierraville":1516,
           "Truckee":1775,
           "Tahoe City":1899,
           "Bodie":2551}
elev = pd.Series(elevDict)
elev

Out[ ]: 0    0.773956
1    0.438878
2    0.858598
3    0.697368
4    0.094177
dtype: float64

Out[ ]: 0    0.773956
1    0.438878
2    0.858598
3    0.697368
4    0.094177
dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 4/52

In [ ]: #

⌨ A series is like a NumPy ndarray , so we can do similar operations, such as: elev[0]

In [ ]: #

⌨ Using a named index, find the elevation of "Placerville":

In [ ]: #

But if you want an actual ndarray , you can use .to_numpy .

⌨ Using the .to_numpy  method on elev , derive elevarray :

In [ ]: #

In [ ]:

Vectorization of a series
Just as we saw with NumPy arrays, we can vectorize series, so for instance apply a mathematical operation or
function.

⌨ Given this, how would we derive elevft  from elev  (which is in metres), assuming we knew there are
0.3048 m in 1 foot.

Out[ ]: Oroville         52
Auburn          394
Sonora          510
Placerville     564
Colfax          725
Nevada City     848
Quincy         1042
Yosemite       1225
Sierraville    1516
Truckee        1775
Tahoe City     1899
Bodie          2551
dtype: int64

Out[ ]: 52

Out[ ]: 564

Out[ ]: array([  52,  394,  510,  564,  725,  848, 1042, 1225, 1516, 1775, 1899,
      2551], dtype=int64)



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 5/52

In [ ]: #

We're going to build a DataFrame from the three series and have the named indices of station names consistent
for each.

⌨ Make a copy of the latitude and temperature series we created earlier...

lat = latitude.copy()
temp = temperature.copy()

In [ ]: #

Note that if we had instead tried to copy them with lat = latitude  etc., that would have
created a reference to the same series so anything we modified to the one affects the other;
using the copy  method creates a separate object.

⌨ ... then assign the indices from elev  to the other two (since we know they're in the same order):

lat.index = elev.index
temp.index = elev.index

... and then display each to confirm that they have these named indices.

Out[ ]: Oroville        170.603675
Auburn         1292.650919
Sonora         1673.228346
Placerville    1850.393701
Colfax         2378.608924
Nevada City    2782.152231
Quincy         3418.635171
Yosemite       4019.028871
Sierraville    4973.753281
Truckee        5823.490814
Tahoe City     6230.314961
Bodie          8369.422572
dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 6/52

In [ ]: #

DataFrame
⌨ Now we'll create a dataframe providing each series in a dictionary key:value pair, where the key is the
variable or field name, and the value is the corresponding series. We made the field name the same as the
series name. We'll start with the numerically indexed series.

sierra_i = pd.DataFrame({"temperature": temperature, "elevation": elevation, "latit
ude": latitude})
sierra_i

Note that we've made sure that they're all in the right order using the process we followed.

Out[ ]: Oroville       39.52
Auburn         38.91
Sonora         37.97
Placerville    38.70
Colfax         39.09
Nevada City    39.25
Quincy         39.94
Yosemite       37.75
Sierraville    40.35
Truckee        39.33
Tahoe City     39.17
Bodie          38.21
dtype: float64

Out[ ]: Oroville       10.7
Auburn          9.7
Sonora          7.7
Placerville     9.2
Colfax          7.3
Nevada City     6.7
Quincy          4.0
Yosemite        5.0
Sierraville     0.9
Truckee        -1.1
Tahoe City     -0.8
Bodie          -4.4
dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 7/52

In [ ]: #

⌨ Now we'll create a dataframe using the series with named indices. We had used abbreviated series names,
but we'll make the field names longer.

sierra = pd.DataFrame({"temperature": temp, "elevation": elev, "latitude": lat})
sierra

In [ ]: #

Out[ ]:
temperature elevation latitude

0 10.7 52 39.52

1 9.7 394 38.91

2 7.7 510 37.97

3 9.2 564 38.70

4 7.3 725 39.09

5 6.7 848 39.25

6 4.0 1042 39.94

7 5.0 1225 37.75

8 0.9 1486 40.35

9 -1.1 1775 39.33

10 -0.8 1899 39.17

11 -4.4 2551 38.21

Out[ ]:
temperature elevation latitude

Oroville 10.7 52 39.52

Auburn 9.7 394 38.91

Sonora 7.7 510 37.97

Placerville 9.2 564 38.70

Colfax 7.3 725 39.09

Nevada City 6.7 848 39.25

Quincy 4.0 1042 39.94

Yosemite 5.0 1225 37.75

Sierraville 0.9 1516 40.35

Truckee -1.1 1775 39.33

Tahoe City -0.8 1899 39.17

Bodie -4.4 2551 38.21



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 8/52

⌨ We can also access individual series, by using object.property format such as ...

sierra.elevation

In [ ]: #

... ⌨ or individual values:

sierra.elevation["Truckee"]

In [ ]: #

⌨ What do you get when you apply the method .index  to sierra ?

In [ ]: #

⌨ What do you get when you apply the method .columns  to sierra ?

In [ ]: #

⛬ Interpret any similarities or differences for the .index  and .columns  results:

Out[ ]: Oroville         52
Auburn          394
Sonora          510
Placerville     564
Colfax          725
Nevada City     848
Quincy         1042
Yosemite       1225
Sierraville    1516
Truckee        1775
Tahoe City     1899
Bodie          2551
Name: elevation, dtype: int64

Out[ ]: 1775

Out[ ]: Index(['Oroville', 'Auburn', 'Sonora', 'Placerville', 'Colfax', 'Nevada Cit
y',
      'Quincy', 'Yosemite', 'Sierraville', 'Truckee', 'Tahoe City', 'Bodi
e'],
     dtype='object')

Out[ ]: Index(['temperature', 'elevation', 'latitude'], dtype='object')



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 9/52

⌨ You may remember the len()  function from base Python, which returns the length of strings and lists. With
numpy arrays it returns the total size, and is the same as what you get with .size on that array. Contrast what you
get with len()  and .size  on the sierra  dataframe, and interpret it below.

In [ ]: sierra.size
len(sierra)

⛬

Reading files into dataframes

We'll take a look at loading data from external files into a dataframe. If you recall from the lecture there are
various file types we can load into a dataframe with the Pandas library. Below we'll examine reading in a csv file.

You can read up on the various file types here (https://pandas.pydata.org/pandas-
docs/stable/user_guide/io.html)

⌨ We'll start with a bit more of the Sierra climate data, and read in a bit longer data frame from a CSV file

sierraFeb = pd.read_csv('pdData/sierraFeb.csv')
sierraFeb

Out[ ]: 36

Out[ ]: 12

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html


1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 10/52

In [ ]: #

⌨ It's usually a good idea to set a useful named index:

sierraFeb.set_index("STATION_NAME")

Out[ ]:
STATION_NAME COUNTY ELEVATION LATITUDE LONGITUDE PRECIPITATION TEMPERATU

0 GROVELAND 2,
CA US Tuolumne 853.4 37.8444 -120.2258 176.02

1 CANYON DAM,
CA US Plumas 1389.9 40.1705 -121.0886 164.08

2 KERN RIVER
PH 3, CA US Kern 823.9 35.7831 -118.4389 67.06

3
DONNER

MEMORIAL ST
PARK, CA US

Nevada 1809.6 39.3239 -120.2331 167.39

4 BOWMAN DAM,
CA US Nevada 1641.3 39.4539 -120.6556 276.61

... ... ... ... ... ... ...

77 PACIFIC
HOUSE, CA US

El
Dorado 1051.6 38.7583 -120.5030 220.22 N

78
MAMMOTH

LAKES
RANGER

STATION, CA US

Mono 2378.7 37.6478 -118.9617 NaN

79 COLFAX, CA US Placer 725.4 39.0911 -120.9480 207.26

80
COLGATE

POWERHOUSE,
CA US

Yuba 181.4 39.3308 -121.1922 168.91 N

81

BODIE
CALIFORNIA

STATE
HISTORIC

PARK, CA US

Mono 2551.2 38.2119 -119.0142 39.62

82 rows × 7 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 11/52

In [ ]: #

⌨ ... and from that we can reference a single column as a series sierraFeb.PRECIPITATION

Out[ ]:
COUNTY ELEVATION LATITUDE LONGITUDE PRECIPITATION TEMPERATURE

STATION_NAME

GROVELAND 2,
CA US Tuolumne 853.4 37.8444 -120.2258 176.02 6.1

CANYON DAM,
CA US Plumas 1389.9 40.1705 -121.0886 164.08 1.4

KERN RIVER
PH 3, CA US Kern 823.9 35.7831 -118.4389 67.06 8.9

DONNER
MEMORIAL ST

PARK, CA US
Nevada 1809.6 39.3239 -120.2331 167.39 -0.9

BOWMAN DAM,
CA US Nevada 1641.3 39.4539 -120.6556 276.61 2.9

... ... ... ... ... ... ...

PACIFIC
HOUSE, CA US

El
Dorado 1051.6 38.7583 -120.5030 220.22 NaN

MAMMOTH
LAKES

RANGER
STATION, CA

US

Mono 2378.7 37.6478 -118.9617 NaN -2.3

COLFAX, CA US Placer 725.4 39.0911 -120.9480 207.26 7.3

COLGATE
POWERHOUSE,

CA US
Yuba 181.4 39.3308 -121.1922 168.91 NaN

BODIE
CALIFORNIA

STATE
HISTORIC

PARK, CA US

Mono 2551.2 38.2119 -119.0142 39.62 -4.4

82 rows × 6 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 12/52

In [ ]: #

Vectorizing series from DataFrames
Just as with ndarrays, series can be vectorized.

⌨ We can either use it from the DataFrame, or pull the series out as an individual series:

elevm = sierraFeb.ELEVATION
elevft = elevm / 0.3048
elevft

In [ ]: #

⌨ Or add a series to an existing dataframe

sierraFeb["ELEVATION_FT"] = sierraFeb.ELEVATION / 0.3048
sierraFeb

Out[ ]: 0     176.02
1     164.08
2      67.06
3     167.39
4     276.61
      ...  
77    220.22
78       NaN
79    207.26
80    168.91
81     39.62
Name: PRECIPITATION, Length: 82, dtype: float64

Out[ ]: 0     2799.868766
1     4560.039370
2     2703.083990
3     5937.007874
4     5384.842520
        ...     
77    3450.131234
78    7804.133858
79    2379.921260
80     595.144357
81    8370.078740
Name: ELEVATION, Length: 82, dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 13/52

In [ ]: #

Out[ ]:
STATION_NAME COUNTY ELEVATION LATITUDE LONGITUDE PRECIPITATION TEMPERATU

0 GROVELAND 2,
CA US Tuolumne 853.4 37.8444 -120.2258 176.02

1 CANYON DAM,
CA US Plumas 1389.9 40.1705 -121.0886 164.08

2 KERN RIVER
PH 3, CA US Kern 823.9 35.7831 -118.4389 67.06

3
DONNER

MEMORIAL ST
PARK, CA US

Nevada 1809.6 39.3239 -120.2331 167.39

4 BOWMAN DAM,
CA US Nevada 1641.3 39.4539 -120.6556 276.61

... ... ... ... ... ... ...

77 PACIFIC
HOUSE, CA US

El
Dorado 1051.6 38.7583 -120.5030 220.22 N

78
MAMMOTH

LAKES
RANGER

STATION, CA US

Mono 2378.7 37.6478 -118.9617 NaN

79 COLFAX, CA US Placer 725.4 39.0911 -120.9480 207.26

80
COLGATE

POWERHOUSE,
CA US

Yuba 181.4 39.3308 -121.1922 168.91 N

81

BODIE
CALIFORNIA

STATE
HISTORIC

PARK, CA US

Mono 2551.2 38.2119 -119.0142 39.62

82 rows × 8 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 14/52

JSON (and other tabular) files
JSON files are dictionary-like files that are often used for input and output with various apps. To write and read
JSON files is similar to writing and reading CSVs and quite a lot of other formats, as you can see at
https://pandas.pydata.org/docs/getting_started/intro_tutorials/02_read_write.html
(https://pandas.pydata.org/docs/getting_started/intro_tutorials/02_read_write.html), using either read_*  or
to_* .

⌨ We'll look at this for JSON files by first creating a JSON file (just so we have something to read, but also to
show how we do this)...

sierraFeb.to_json("pdData/sierraFeb.json")

In [ ]: #

⌨ ... and then reading it in.

sierraFebNew = pd.read_json("pdData/sierraFeb.json")
sierraFebNew

https://pandas.pydata.org/docs/getting_started/intro_tutorials/02_read_write.html
https://pandas.pydata.org/docs/getting_started/intro_tutorials/02_read_write.html


1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 15/52

In [ ]: #

⌨ Just to see what the JSON file looks like, we could open it in a text editor (like Notepad) separately, or we can
just use the standard Python read method:

infile = "pdData/sierraFeb.json"
f = open(infile, "r")
f.readline()
f.close()

Out[ ]:
STATION_NAME COUNTY ELEVATION LATITUDE LONGITUDE PRECIPITATION TEMPERATU

0 GROVELAND 2,
CA US Tuolumne 853.4 37.8444 -120.2258 176.02

1 CANYON DAM,
CA US Plumas 1389.9 40.1705 -121.0886 164.08

2 KERN RIVER
PH 3, CA US Kern 823.9 35.7831 -118.4389 67.06

3
DONNER

MEMORIAL ST
PARK, CA US

Nevada 1809.6 39.3239 -120.2331 167.39

4 BOWMAN DAM,
CA US Nevada 1641.3 39.4539 -120.6556 276.61

... ... ... ... ... ... ...

77 PACIFIC
HOUSE, CA US

El
Dorado 1051.6 38.7583 -120.5030 220.22 N

78
MAMMOTH

LAKES
RANGER

STATION, CA US

Mono 2378.7 37.6478 -118.9617 NaN

79 COLFAX, CA US Placer 725.4 39.0911 -120.9480 207.26

80
COLGATE

POWERHOUSE,
CA US

Yuba 181.4 39.3308 -121.1922 168.91 N

81

BODIE
CALIFORNIA

STATE
HISTORIC

PARK, CA US

Mono 2551.2 38.2119 -119.0142 39.62

82 rows × 8 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 16/52

In [ ]: #



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 17/52

Out[ ]: '{"STATION_NAME":{"0":"GROVELAND 2, CA US","1":"CANYON DAM, CA US","2":"KERN 
RIVER PH 3, CA US","3":"DONNER MEMORIAL ST PARK, CA US","4":"BOWMAN DAM, CA U
S","5":"BRUSH CREEK RANGER STATION, CA US","6":"GRANT GROVE, CA US","7":"LEE 
VINING, CA US","8":"OROVILLE MUNICIPAL AIRPORT, CA US","9":"LEMON COVE, CA U
S","10":"CALAVERAS BIG TREES, CA US","11":"BUCKS CREEK, CA US","12":"GRASS VA
LLEY NUMBER 2, CA US","13":"PLACERVILLE, CA US","14":"THREE RIVERS EDISON PH 
1, CA US","15":"GLENNVILLE, CA US","16":"MATHER, CA US","17":"BLUE CANYON AIR
PORT, CA US","18":"GEM LAKE, CA US","19":"MINERAL, CA US","20":"SUSANVILLE 2 
SW, CA US","21":"BRIDGEPORT, CA US","22":"GOLD RUN 2 SW, CA US","23":"FORESTH
ILL RANGER STATION, CA US","24":"MANZANITA LAKE, CA US","25":"OROVILLE, CA U
S","26":"QUINCY, CA US","27":"VISALIA, CA US","28":"PORTOLA, CA US","29":"BAL
CH POWER HOUSE, CA US","30":"DOWNIEVILLE, CA US","31":"HAIWEE, CA US","32":"V
OLTA POWER HOUSE, CA US","33":"CAMP PARDEE, CA US","34":"ELLERY LAKE, CA U
S","35":"TRUCKEE RANGER STATION, CA US","36":"BISHOP AIRPORT, CA US","37":"DE 
SABLA, CA US","38":"LAKE SABRINA, CA US","39":"ASH MOUNTAIN, CA US","40":"SOU
TH LAKE TAHOE AIRPORT, CA US","41":"LINDSAY, CA US","42":"CHERRY VALLEY DAM, 
CA US","43":"AUBERRY 2 NW, CA US","44":"AUBURN, CA US","45":"NORTH FORK RANGE
R STATION, CA US","46":"NEVADA CITY, CA US","47":"REPRESA, CA US","48":"SIERR
AVILLE R S, CA US","49":"CHESTER, CA US","50":"NEW MELONES DAM HQ, CA US","5
1":"CHICO UNIVERSITY FARM, CA US","52":"EXCHEQUER DAM, CA US","53":"BIG CREEK 
PH 1, CA US","54":"SONORA, CA US","55":"WEST POINT, CA US","56":"SO ENTRANCE 
YOSEMITE N.P., CA US","57":"HARRY ENGLEBRIGHT DM, CA US","58":"HETCH HETCHY, 
CA US","59":"SUTTER HILL CDF, CA US","60":"FRIANT GOVERNMENT CAMP, CA US","6
1":"GEORGETOWN R S, CA US","62":"PINE FLAT DAM, CA US","63":"INDEPENDENCE, CA 
US","64":"FIDDLETOWN DEXTER RANCH, CA US","65":"STRAWBERRY VALLEY, CA US","6
6":"YOSEMITE VILLAGE 12 W, CA US","67":"KELSEY 1 N, CA US","68":"PARADISE, CA 
US","69":"TAHOE CITY, CA US","70":"INYOKERN, CA US","71":"SOUTH LAKE, CA U
S","72":"YOSEMITE PARK HEADQUARTERS, CA US","73":"BISHOP CRK INTAKE 2, CA U
S","74":"BOCA, CA US","75":"HUNTINGTON LAKE, CA US","76":"LODGEPOLE, CA U
S","77":"PACIFIC HOUSE, CA US","78":"MAMMOTH LAKES RANGER STATION, CA US","7
9":"COLFAX, CA US","80":"COLGATE POWERHOUSE, CA US","81":"BODIE CALIFORNIA ST
ATE HISTORIC PARK, CA US"},"COUNTY":{"0":"Tuolumne","1":"Plumas","2":"Ker
n","3":"Nevada","4":"Nevada","5":"Butte","6":"Tulare","7":"Mono","8":"Butt
e","9":"Tulare","10":"Calaveras","11":"Plumas","12":"Nevada","13":"El Dorad
o","14":"Tulare","15":"Kern","16":"Tuolumne","17":"Placer","18":"Mono","1
9":"Tehama","20":"Lassen","21":"Mono","22":"Placer","23":"Placer","24":"Shast
a","25":"Butte","26":"Plumas","27":"Tulare","28":"Plumas","29":"Fresno","3
0":"Sierra","31":"Inyo","32":"Shasta","33":"Calaveras","34":"Mono","35":"Neva
da","36":"Inyo","37":"Butte","38":"Inyo","39":"Tulare","40":"El Dorado","4
1":"Tulare","42":"Tuolumne","43":"Fresno","44":"Placer","45":"Madera","46":"N
evada","47":"Sacramento","48":"Sierra","49":"Plumas","50":"Tuolumne","51":"Bu
tte","52":"Mariposa","53":"Fresno","54":"Tuolumne","55":"Calaveras","56":"Mar
iposa","57":"Nevada","58":"Tuolumne","59":"Amador","60":"Fresno","61":"El Dor
ado","62":"Fresno","63":"Inyo","64":"Amador","65":"Yuba","66":"Mariposa","6
7":"El Dorado","68":"Butte","69":"Placer","70":"Kern","71":"Inyo","72":"Marip
osa","73":"Inyo","74":"Nevada","75":"Fresno","76":"Tulare","77":"El Dorad
o","78":"Mono","79":"Placer","80":"Yuba","81":"Mono"},"ELEVATION":{"0":853.
4,"1":1389.9,"2":823.9,"3":1809.6,"4":1641.3,"5":1085.1,"6":2011.7,"7":2071.
7,"8":57.9,"9":156.4,"10":1431.0,"11":576.4,"12":731.5,"13":563.9,"14":347.
5,"15":957.1,"16":1374.6,"17":1608.1,"18":2734.1,"19":1485.9,"20":1283.8,"2
1":1972.1,"22":1011.9,"23":919.0,"24":1752.6,"25":52.1,"26":1042.4,"27":106.
7,"28":1478.3,"29":528.8,"30":888.5,"31":1165.9,"32":676.7,"33":200.6,"34":29
39.8,"35":1774.9,"36":1250.3,"37":826.0,"38":2763.0,"39":520.6,"40":1924.5,"4
1":132.6,"42":1452.4,"43":637.0,"44":393.8,"45":806.2,"46":847.6,"47":89.9,"4
8":1516.4,"49":1380.7,"50":292.6,"51":56.4,"52":134.7,"53":1486.8,"54":510.
5,"55":845.8,"56":1538.3,"57":243.8,"58":1179.6,"59":483.4,"60":125.0,"61":91
4.7,"62":187.5,"63":1204.0,"64":658.4,"65":1160.7,"66":2017.8,"67":609.6,"6



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 18/52

8":533.4,"69":1898.9,"70":740.7,"71":2920.0,"72":1224.7,"73":2485.3,"74":169
9.3,"75":2139.7,"76":2052.8,"77":1051.6,"78":2378.7,"79":725.4,"80":181.4,"8
1":2551.2},"LATITUDE":{"0":37.8444,"1":40.1705,"2":35.7831,"3":39.3239,"4":3
9.4539,"5":39.6949,"6":36.7394,"7":37.9567,"8":39.49,"9":36.3817,"10":38.276
9,"11":39.9372,"12":39.2041,"13":38.6955,"14":36.465,"15":35.7269,"16":37.88
5,"17":39.2774,"18":37.7519,"19":40.3458,"20":40.4167,"21":38.2575,"22":39.16
5,"23":39.01,"24":40.54111,"25":39.5177,"26":39.9366,"27":36.3278,"28":39.805
3,"29":36.9092,"30":39.5633,"31":36.1388,"32":40.4583,"33":38.2486,"34":37.93
55,"35":39.333,"36":37.3711,"37":39.8716,"38":37.213,"39":36.4914,"40":38.898
3,"41":36.2032,"42":37.9747,"43":37.0919,"44":38.9072,"45":37.2329,"46":39.24
66,"47":38.6944,"48":39.5833,"49":40.3033,"50":38.0047,"51":39.6911,"52":37.5
85,"53":37.2064,"54":37.9672,"55":38.3775,"56":37.5122,"57":39.2372,"58":37.9
613,"59":38.3772,"60":36.9969,"61":38.933,"62":36.821,"63":36.798,"64":38.523
6,"65":39.563,"66":37.7592,"67":38.8088,"68":39.7538,"69":39.1678,"70":35.651
3,"71":37.1683,"72":37.75,"73":37.248,"74":39.3886,"75":37.2275,"76":36.604
4,"77":38.7583,"78":37.6478,"79":39.0911,"80":39.3308,"81":38.2119},"LONGITUD
E":{"0":-120.2258,"1":-121.0886,"2":-118.4389,"3":-120.2331,"4":-120.655
6,"5":-121.3452,"6":-118.9631,"7":-119.1194,"8":-121.61833,"9":-119.0264,"1
0":-120.3113,"11":-121.3147,"12":-121.068,"13":-120.8244,"14":-118.8619,"15":
-118.7006,"16":-119.8561,"17":-120.7102,"18":-119.1402,"19":-121.6091,"20":-1
20.6631,"21":-119.2286,"22":-120.8566,"23":-120.8455,"24":-121.57667,"25":-12
1.553,"26":-120.9475,"27":-119.2994,"28":-120.4719,"29":-119.0883,"30":-120.8
238,"31":-117.9527,"32":-121.8663,"33":-120.8433,"34":-119.2305,"35":-120.17
3,"36":-118.358,"37":-121.6108,"38":-118.6136,"39":-118.8253,"40":-119.994
7,"41":-119.0545,"42":-119.9161,"43":-119.5128,"44":-121.0838,"45":-119.509
7,"46":-121.0008,"47":-121.1611,"48":-120.3705,"49":-121.2422,"50":-120.486
3,"51":-121.8211,"52":-120.2672,"53":-119.2419,"54":-120.3872,"55":-120.545
2,"56":-119.6331,"57":-121.2666,"58":-119.783,"59":-120.8008,"60":-119.707
2,"61":-120.8008,"62":-119.3374,"63":-118.2036,"64":-120.7061,"65":-121.107
7,"66":-119.8208,"67":-120.8208,"68":-121.6241,"69":-120.1428,"70":-117.821
3,"71":-118.5705,"72":-119.5897,"73":-118.5813,"74":-120.0936,"75":-119.2205
6,"76":-118.7325,"77":-120.503,"78":-118.9617,"79":-120.948,"80":-121.1922,"8
1":-119.0142},"PRECIPITATION":{"0":176.02,"1":164.08,"2":67.06,"3":167.3
9,"4":276.61,"5":296.16,"6":186.18,"7":71.88,"8":137.67,"9":62.74,"10":254.
0,"11":282.7,"12":229.11,"13":170.69,"14":114.05,"15":95.25,"16":152.4,"17":2
68.22,"18":81.53,"19":217.93,"20":45.21,"21":41.4,"22":224.28,"23":214.88,"2
4":132.84,"25":123.7,"26":181.86,"27":46.99,"28":98.3,"29":144.27,"30":267.2
1,"31":37.59,"32":127.0,"33":98.04,"34":93.98,"35":126.49,"36":21.59,"37":29
5.15,"38":68.83,"39":122.68,"40":66.55,"41":54.61,"42":220.47,"43":117.86,"4
4":159.51,"45":155.45,"46":268.48,"47":104.65,"48":null,"49":135.13,"50":125.
73,"51":112.27,"52":90.17,"53":148.34,"54":147.83,"55":162.56,"56":198.37,"5
7":150.11,"58":149.1,"59":140.21,"60":66.04,"61":227.08,"62":95.25,"63":25.6
5,"64":155.96,"65":346.71,"66":198.12,"67":162.05,"68":255.52,"69":144.53,"7
0":30.23,"71":83.57,"72":169.16,"73":49.02,"74":86.11,"75":204.22,"76":214.3
8,"77":220.22,"78":null,"79":207.26,"80":168.91,"81":39.62},"TEMPERATURE":
{"0":6.1,"1":1.4,"2":8.9,"3":-0.9,"4":2.9,"5":null,"6":1.7,"7":0.4,"8":10.
3,"9":11.3,"10":2.7,"11":null,"12":6.9,"13":9.2,"14":9.7,"15":6.5,"16":nul
l,"17":4.1,"18":null,"19":0.9,"20":2.4,"21":-2.2,"22":null,"23":null,"24":0.
2,"25":10.7,"26":4.0,"27":10.9,"28":0.5,"29":9.2,"30":5.3,"31":9.3,"32":nul
l,"33":10.1,"34":null,"35":-1.1,"36":5.7,"37":7.1,"38":null,"39":9.8,"40":-0.
6,"41":11.1,"42":4.4,"43":8.8,"44":9.7,"45":7.2,"46":6.7,"47":null,"48":0.
8,"49":0.7,"50":10.1,"51":9.8,"52":null,"53":4.7,"54":7.7,"55":null,"56":2.
5,"57":null,"58":4.9,"59":9.3,"60":10.8,"61":7.2,"62":null,"63":7.6,"64":nul
l,"65":4.6,"66":2.5,"67":null,"68":9.3,"69":-0.8,"70":9.8,"71":null,"72":5.
0,"73":null,"74":-1.4,"75":1.3,"76":-1.4,"77":null,"78":-2.3,"79":7.3,"80":nu
ll,"81":-4.4},"ELEVATION_FT":{"0":2799.8687664042,"1":4560.0393700787,"2":270
3.0839895013,"3":5937.0078740157,"4":5384.842519685,"5":3560.0393700787,"6":6



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 19/52

Set the index
Set the index to the Station Name:

sierraFebNew = sierraFebNew.set_index("STATION_NAME")

600.0656167979,"7":6796.9160104987,"8":189.9606299213,"9":513.1233595801,"1
0":4694.8818897638,"11":1891.0761154856,"12":2399.9343832021,"13":1850.065616
7979,"14":1140.0918635171,"15":3140.0918635171,"16":4509.842519685,"17":5275.
9186351706,"18":8970.1443569554,"19":4875.0,"20":4211.9422572178,"21":6470.14
43569554,"22":3319.8818897638,"23":3015.0918635171,"24":5750.0,"25":170.93175
85302,"26":3419.9475065617,"27":350.0656167979,"28":4850.0656167979,"29":173
4.9081364829,"30":2915.0262467192,"31":3825.1312335958,"32":2220.144356955
4,"33":658.1364829396,"34":9645.0131233596,"35":5823.1627296588,"36":4102.034
1207349,"37":2709.9737532808,"38":9064.9606299213,"39":1708.0052493438,"40":6
313.9763779528,"41":435.0393700787,"42":4765.0918635171,"43":2089.895013123
4,"44":1291.9947506562,"45":2645.0131233596,"46":2780.8398950131,"47":294.947
5065617,"48":4975.0656167979,"49":4529.8556430446,"50":959.9737532808,"51":18
5.0393700787,"52":441.9291338583,"53":4877.9527559055,"54":1674.8687664042,"5
5":2774.9343832021,"56":5046.9160104987,"57":799.8687664042,"58":3870.0787401
575,"59":1585.9580052493,"60":410.1049868766,"61":3000.9842519685,"62":615.15
7480315,"63":3950.1312335958,"64":2160.1049868766,"65":3808.0708661417,"66":6
620.0787401575,"67":2000.0,"68":1750.0,"69":6229.9868766404,"70":2430.1181102
362,"71":9580.0524934383,"72":4018.0446194226,"73":8153.8713910761,"74":5575.
1312335958,"75":7020.0131233596,"76":6734.9081364829,"77":3450.1312335958,"7
8":7804.1338582677,"79":2379.9212598425,"80":595.1443569554,"81":8370.0787401
575}}'



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 20/52

In [ ]: #

Transpose
See what happens when you transpose sierraFebNew  with .transpose()

Out[ ]:
COUNTY ELEVATION LATITUDE LONGITUDE PRECIPITATION TEMPERATURE

STATION_NAME

GROVELAND 2,
CA US Tuolumne 853.4 37.8444 -120.2258 176.02 6.1

CANYON DAM,
CA US Plumas 1389.9 40.1705 -121.0886 164.08 1.4

KERN RIVER
PH 3, CA US Kern 823.9 35.7831 -118.4389 67.06 8.9

DONNER
MEMORIAL ST

PARK, CA US
Nevada 1809.6 39.3239 -120.2331 167.39 -0.9

BOWMAN DAM,
CA US Nevada 1641.3 39.4539 -120.6556 276.61 2.9

... ... ... ... ... ... ...

PACIFIC
HOUSE, CA US

El
Dorado 1051.6 38.7583 -120.5030 220.22 NaN

MAMMOTH
LAKES

RANGER
STATION, CA

US

Mono 2378.7 37.6478 -118.9617 NaN -2.3

COLFAX, CA US Placer 725.4 39.0911 -120.9480 207.26 7.3

COLGATE
POWERHOUSE,

CA US
Yuba 181.4 39.3308 -121.1922 168.91 NaN

BODIE
CALIFORNIA

STATE
HISTORIC

PARK, CA US

Mono 2551.2 38.2119 -119.0142 39.62 -4.4

82 rows × 7 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 21/52

In [ ]: #

sf_weather_daily
Make sure you have the "sf_weather_daily.csv" file downloaded from iLearn and in the pdData  folder which is
in the folder where this Jupyter notebook resides. (Note you can still path to it as an argument you pass to the
function, i.e "C:\Geog625\projects\py...")

⌨ We'll create an object called sf_weather  and load the sf weather csv into a dataframe.

#load csv into dataframe
sf_weather = pd.read_csv('pdData/sf_weather_daily.csv')
sf_weather

Out[ ]:

STATION_NAME GROVELAND
2, CA US

CANYON
DAM, CA

US

KERN
RIVER PH
3, CA US

DONNER
MEMORIAL

ST PARK,
CA US

BOWMAN
DAM, CA

US

BRUSH
CREEK

RANGER
STATION,

CA US

GRO

COUNTY Tuolumne Plumas Kern Nevada Nevada Butte

ELEVATION 853.4 1389.9 823.9 1809.6 1641.3 1085.1

LATITUDE 37.8444 40.1705 35.7831 39.3239 39.4539 39.6949

LONGITUDE -120.2258 -121.0886 -118.4389 -120.2331 -120.6556 -121.3452 -

PRECIPITATION 176.02 164.08 67.06 167.39 276.61 296.16

TEMPERATURE 6.1 1.4 8.9 -0.9 2.9 NaN

ELEVATION_FT 2799.868766 4560.03937 2703.08399 5937.007874 5384.84252 3560.03937 6600

7 rows × 82 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 22/52

In [ ]: #

Notice how in the dataframe you see kind of a truncated version of all your data. Somewhere around maybe line
4 you see ..., well there is a function you can use to remedy this if you'd like to see all your data at once. We'll be
using the Pandas "set_option" function to expose all rows to this. You can also expose additional columns if you
have a lot. I've included sample code below, but commented out the option for width and columns, only provided
for reference.

#set the data frame display option
pd.set_option('display.max_rows', 5000)

Some other options you can set:

pd.set_option('display.max_columns', 100)

pd.set_option('display.width', 1000)

⌨ Make some of these changes and call up your sf_weather dataframe to see the difference.

Out[ ]:
date_time maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset

0 1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM

1 1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM

2 1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM

3 1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM

4 1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM

... ... ... ... ... ... ... ... ... ..

360 12/27/2019
12:00 15 8 59.0 46.4 12 53.6 8:44 AM 6:34 PM

361 12/28/2019
12:00 12 8 53.6 46.4 11 51.8 9:30 AM 7:33 PM

362 12/29/2019
12:00 11 10 51.8 50.0 11 51.8 10:09 AM 8:32 PM

363 12/30/2019
12:00 17 8 62.6 46.4 13 55.4 10:42 AM 9:31 PM

364 12/31/2019
12:00 15 9 59.0 48.2 13 55.4 11:12 AM 10:28

PM

365 rows × 16 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 23/52

In [ ]: #

⌨ We can set the row label to the 'date_time' field with .set_index() . Note that you'll still have integer
indices, but this provides another way to reference a row, and that row label will stick with the data even after you
subset it.

sf_weather = sf_weather.set_index('date_time')
sf_weather

Out[ ]:
date_time maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset

0 1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM

1 1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM

2 1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM

3 1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM

4 1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM

... ... ... ... ... ... ... ... ... ..

360 12/27/2019
12:00 15 8 59.0 46.4 12 53.6 8:44 AM 6:34 PM

361 12/28/2019
12:00 12 8 53.6 46.4 11 51.8 9:30 AM 7:33 PM

362 12/29/2019
12:00 11 10 51.8 50.0 11 51.8 10:09 AM 8:32 PM

363 12/30/2019
12:00 17 8 62.6 46.4 13 55.4 10:42 AM 9:31 PM

364 12/31/2019
12:00 15 9 59.0 48.2 13 55.4 11:12 AM 10:28

PM

365 rows × 16 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 24/52

In [ ]: #

❔ What is the datatype of the variable "sf_weather"?

Answer: pandas.core.frame.DataFrame

⌨ If we wanted to examine the first five lines of sf_weather, we could use the ".head()" method.

sf_weather.head()

In [ ]: #

Out[ ]: Index(['date_time', 'maxtempC', 'mintempC', 'maxtempF', 'mintempF', 'tempC', 
'tempF', 'moonrise', 'moonset', 'sunrise', 'sunset', 'FeelsLikeC', 'WindGustK
mph', 'winddirDegree', 'windspeedKmph', 'location'], dtype='object')

Out[ ]: RangeIndex(start=0, stop=365, step=1)

Out[ ]: Index(['1/1/2019 12:00', '1/2/2019 12:00', '1/3/2019 12:00', '1/4/2019 12:0
0', '1/5/2019 12:00', '1/6/2019 12:00', '1/7/2019 12:00', '1/8/2019 12:00', 
'1/9/2019 12:00', '1/10/2019 12:00',
      ...
      '12/22/2019 12:00', '12/23/2019 12:00', '12/24/2019 12:00', '12/25/201
9 12:00', '12/26/2019 12:00', '12/27/2019 12:00', '12/28/2019 12:00', '12/29/
2019 12:00', '12/30/2019 12:00', '12/31/2019 12:00'], dtype='object', name='d
ate_time', length=365)

Out[ ]: pandas.core.frame.DataFrame

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7

1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 25/52

⌨ How would we display the first 10 lines of sf_weather? Figure this out by typing

help(sf_weather.head)

to see what parameters it accepts. There's only one.

⌨ Then use that information to display the first 10 lines of sf_weather.

Note that even though sf_weather  is an object we created, its object type has associated methods.

In [ ]: #

⌨ If we wanted to examine the end of the sf_weather data, then we could use the .tail()  method. Try this
with sf_weather using otherwise the same syntax as .head  and get the last 10 lines.

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7

1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM 7

1/6/2019
12:00 13 8 55.4 46.4 12 53.6 7:54 AM 5:54 PM 7

1/7/2019
12:00 13 7 55.4 44.6 13 55.4 8:37 AM 6:48 PM 7

1/8/2019
12:00 13 9 55.4 48.2 13 55.4 9:15 AM 7:44 PM 7

1/9/2019
12:00 13 10 55.4 50.0 13 55.4 9:50 AM 8:40 PM 7

1/10/2019
12:00 12 9 53.6 48.2 12 53.6 10:20 AM 9:37 PM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 26/52

In [ ]: #

⌨ You can call a series (column) of your dataframe as a property to see the values. Let's say we wanted to see
the values of the maxtempF  column you would use this syntax to access maxtempF  as a variable max_temp :

max_temp = sf_weather.maxtempF
max_temp

In [ ]: #

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

12/22/2019
12:00 14 10 57.2 50.0 12 53.6 3:33 AM 2:33 PM

12/23/2019
12:00 13 5 55.4 41.0 11 51.8 4:41 AM 3:11 PM

12/24/2019
12:00 11 8 51.8 46.4 11 51.8 5:48 AM 3:54 PM

12/25/2019
12:00 12 6 53.6 42.8 11 51.8 6:52 AM 4:43 PM

12/26/2019
12:00 14 8 57.2 46.4 12 53.6 7:52 AM 5:37 PM

12/27/2019
12:00 15 8 59.0 46.4 12 53.6 8:44 AM 6:34 PM

12/28/2019
12:00 12 8 53.6 46.4 11 51.8 9:30 AM 7:33 PM

12/29/2019
12:00 11 10 51.8 50.0 11 51.8 10:09 AM 8:32 PM

12/30/2019
12:00 17 8 62.6 46.4 13 55.4 10:42 AM 9:31 PM

12/31/2019
12:00 15 9 59.0 48.2 13 55.4 11:12 AM 10:28

PM

Out[ ]: date_time
1/1/2019 12:00      11
1/2/2019 12:00      10
1/3/2019 12:00      11
1/4/2019 12:00      12
1/5/2019 12:00      13
                   ..
12/27/2019 12:00    15
12/28/2019 12:00    12
12/29/2019 12:00    11
12/30/2019 12:00    17
12/31/2019 12:00    15
Name: maxtempC, Length: 365, dtype: int64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 27/52

❔ What is the datatype (hint: .dtype ) of max_temp  series just created? :

In [ ]: #

Answer: pandas.core.series.Series

⌨ In the following examples, we'll take a closer look at how we can explore the properties of dataframe. For
example, if you want to see the number of rows or columns in your dataframe, use the ".shape" property.

sf_weather.shape

In [ ]: #

⌨ What if we wanted to see the data types of each of fields? Sometimes this is very useful if you're trying to
pass a field to a function that only excepts a certain datatype, for example integer, but you keep encountering
errors. Examing the datatypes of your fields could be useful.

sf_weather.dtypes

In [ ]: #

Data selection in Pandas

Out[ ]: dtype('int64')

Out[ ]: (365, 15)

Out[ ]: maxtempC           int64
mintempC           int64
maxtempF         float64
mintempF         float64
tempC              int64
tempF            float64
moonrise          object
moonset           object
sunrise           object
sunset            object
FeelsLikeC         int64
WindGustKmph       int64
winddirDegree      int64
windspeedKmph      int64
location          object
dtype: object



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 28/52

In this section we can explore how to recreate dataframes by selecting only certain parts of your larger
dataframe. One thing that's always important to remember that if you want to create a new version of your
dataframe that you'll need to assign your operation to a new object.

Series selection
⌨ This example shows how we can create a new dataframe with only the four columns; maxtempF ,
mintempF , location , and sunset . Obviously we'd still have the date_time  field because it is our index.

sf_temp_sunset = sf_weather[['maxtempF', 'mintempF', 'location', 'sunset']]
sf_temp_sunset

In [ ]: #

⌨ Create a new dataframe called sf_mintemp_moon  that only contains the columns: date_time ,
mintempC , tempC , moonrise , and location . However, don't actually include date_time  in your request

since it's the named index and will already be there, and in fact create an error if you include it.

Out[ ]:
maxtempC mintempC location sunset

date_time

1/1/2019 12:00 11 5 san_francisco 5:02 PM

1/2/2019 12:00 10 5 san_francisco 5:02 PM

1/3/2019 12:00 11 5 san_francisco 5:03 PM

1/4/2019 12:00 12 6 san_francisco 5:04 PM

1/5/2019 12:00 13 8 san_francisco 5:05 PM

... ... ... ... ...

12/27/2019 12:00 15 8 san_francisco 4:58 PM

12/28/2019 12:00 12 8 san_francisco 4:58 PM

12/29/2019 12:00 11 10 san_francisco 4:59 PM

12/30/2019 12:00 17 8 san_francisco 5:00 PM

12/31/2019 12:00 15 9 san_francisco 5:01 PM

365 rows × 4 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 29/52

In [ ]: #

Selecting rows using indexing
.loc[] and .iloc[] are two very common methods of selecting data within a dataframe by indexing.

Using loc  to use named indices and iloc  for numeric indices
⌨ loc uses the label of the column or the label of the row and iloc uses the index of the row or the index of the
column. In this example below we're accessing the row with index date January 1st, 2019.

sf_weather.loc['1/1/2019 12:00']

Out[ ]:
mintempC tempC moonrise location

date_time

1/1/2019 12:00 5 11 3:17 AM san_francisco

1/2/2019 12:00 5 9 4:17 AM san_francisco

1/3/2019 12:00 5 10 5:17 AM san_francisco

1/4/2019 12:00 6 11 6:13 AM san_francisco

1/5/2019 12:00 8 13 7:06 AM san_francisco

... ... ... ... ...

12/27/2019 12:00 8 12 8:44 AM san_francisco

12/28/2019 12:00 8 11 9:30 AM san_francisco

12/29/2019 12:00 10 11 10:09 AM san_francisco

12/30/2019 12:00 8 13 10:42 AM san_francisco

12/31/2019 12:00 9 13 11:12 AM san_francisco

365 rows × 4 columns



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 30/52

In [ ]: #

⌨ iloc alternative, getting a range of records.

print(sf_weather.iloc[1:4])

In [ ]: #

⌨ You can also specify a range with named indices using loc.

Feb = sf_weather.loc['2/1/2019 12:00':'2/28/2019 12:00']

Then reference part of this subset with iloc , and we'll see that we have new integer indices, while the row
labels stick with what they were, illustrating why creating row labels with .set_index  was useful.

Out[ ]: maxtempC                    11
mintempC                     5
maxtempF                  51.8
mintempF                  41.0
tempC                       11
tempF                     51.8
moonrise               3:17 AM
moonset                2:10 PM
sunrise                7:25 AM
sunset                 5:02 PM
FeelsLikeC                  11
WindGustKmph                22
winddirDegree               49
windspeedKmph               12
location         san_francisco
Name: 1/1/2019 12:00, dtype: object

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 31/52

In [ ]: #



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 32/52

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

2/1/2019
12:00 13 10 55.4 50.0 13 55.4 5:02 AM 2:58 PM 7

2/2/2019
12:00 12 10 53.6 50.0 12 53.6 5:51 AM 3:49 PM 7

2/3/2019
12:00 12 10 53.6 50.0 12 53.6 6:35 AM 4:42 PM 7

2/4/2019
12:00 9 8 48.2 46.4 9 48.2 7:15 AM 5:38 PM

2/5/2019
12:00 10 6 50.0 42.8 10 50.0 7:51 AM 6:33 PM 7

2/6/2019
12:00 10 5 50.0 41.0 9 48.2 8:22 AM 7:30 PM 7

2/7/2019
12:00 10 5 50.0 41.0 10 50.0 8:52 AM 8:26 PM 7

2/8/2019
12:00 11 7 51.8 44.6 10 50.0 9:21 AM 9:23 PM 7

2/9/2019
12:00 11 8 51.8 46.4 11 51.8 9:49 AM 10:20

PM
7

2/10/2019
12:00 10 7 50.0 44.6 9 48.2 10:17 AM 11:19

PM
7

2/11/2019
12:00 11 6 51.8 42.8 10 50.0 10:47 AM No

moonset
7

2/12/2019
12:00 11 7 51.8 44.6 11 51.8 11:21 AM 12:19

AM
7

2/13/2019
12:00 14 11 57.2 51.8 14 57.2 11:59 AM 1:22 AM 7

2/14/2019
12:00 14 11 57.2 51.8 11 51.8 12:43 PM 2:26 AM 7

2/15/2019
12:00 11 9 51.8 48.2 11 51.8 1:37 PM 3:31 AM 6

2/16/2019
12:00 11 9 51.8 48.2 10 50.0 2:38 PM 4:33 AM 6

2/17/2019
12:00 9 7 48.2 44.6 9 48.2 3:47 PM 5:32 AM 6

2/18/2019
12:00 12 5 53.6 41.0 10 50.0 5:00 PM 6:24 AM 6

2/19/2019
12:00 11 5 51.8 41.0 10 50.0 6:15 PM 7:11 AM 6

2/20/2019
12:00 11 6 51.8 42.8 11 51.8 7:29 PM 7:51 AM 6

2/21/2019
12:00 11 6 51.8 42.8 10 50.0 8:40 PM 8:28 AM 6

2/22/2019
12:00 10 5 50.0 41.0 9 48.2 9:50 PM 9:03 AM 6



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 33/52

⌨ We'll do some of this with the simpler sierra data

sierra

In [ ]: #

⌨ How would you get the sierra data from 'Sonora' to 'Colfax'?

maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

2/23/2019
12:00 12 5 53.6 41.0 11 51.8 10:57 PM 9:37 AM 6

2/24/2019
12:00 11 8 51.8 46.4 11 51.8 No

moonrise 10:11 AM 6

2/25/2019
12:00 11 4 51.8 39.2 10 50.0 12:01 AM 10:47

AM
6

2/26/2019
12:00 12 3 53.6 37.4 12 53.6 1:04 AM 11:26 AM 6

2/27/2019
12:00 14 9 57.2 48.2 14 57.2 2:03 AM 12:08

PM
6

2/28/2019
12:00 14 10 57.2 50.0 13 55.4 2:58 AM 12:55

PM
6

Out[ ]:
temperature elevation latitude

Oroville 10.7 52 39.52

Auburn 9.7 394 38.91

Sonora 7.7 510 37.97

Placerville 9.2 564 38.70

Colfax 7.3 725 39.09

Nevada City 6.7 848 39.25

Quincy 4.0 1042 39.94

Yosemite 5.0 1225 37.75

Sierraville 0.9 1516 40.35

Truckee -1.1 1775 39.33

Tahoe City -0.8 1899 39.17

Bodie -4.4 2551 38.21



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 34/52

In [ ]: #

⌨ If you wanted to select multiple rows specifically (such as the first day of the month) then you can pass those
row indices. Note that the list is a single input to .loc .

sf_weather.loc[['1/1/2019 12:00','2/1/2019 12:00','3/1/2019 12:00']]

In [ ]:

⌨ Using the same method, get the sierra data for Sonora and Sierraville.

In [ ]: #

⌨ Back to sf_weather, the first set of labels you pass will only return the rows you're interested in, but if you
wanted to refine your data data, you can also pass a set of column labels as the second argument:

sf_weather.loc['1/1/2019 12:00':'1/3/2019 12:00',['maxtempC','mintempC','locatio
n']]

Out[ ]:
temperature elevation latitude

Sonora 7.7 510 37.97

Placerville 9.2 564 38.70

Colfax 7.3 725 39.09

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

2/1/2019
12:00 13 10 55.4 50.0 13 55.4 5:02 AM 2:58 PM 7

3/1/2019
12:00 12 8 53.6 46.4 12 53.6 3:49 AM 1:45 PM 6

Out[ ]:
temperature elevation latitude

Sonora 7.7 510 37.97

Sierraville 0.9 1516 40.35



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 35/52

In [ ]: #

⌨ Create a dataframe that contains data for July 1-5. Show only the columns mintempF , location ,
moonrise , and WindGustKmph .

In [ ]: #

⌨ Next, we can explore the .iloc[] method to select data. To differentiate these two methonds I like to think of the
"i" in the iloc method as "index", meaning we need to pass an index number to return the row or column. First set
of indexes are rows and second set of indexes are columns:

sf_weather.iloc[0]

Out[ ]:
maxtempC mintempC location

date_time

1/1/2019 12:00 11 5 san_francisco

1/2/2019 12:00 10 5 san_francisco

1/3/2019 12:00 11 5 san_francisco

Out[ ]:
mintempF location moonrise WindGustKmph

date_time

7/1/2019 12:00 57.2 san_francisco 3:50 AM 16

7/2/2019 12:00 59.0 san_francisco 4:44 AM 16

7/3/2019 12:00 57.2 san_francisco 5:46 AM 13

7/4/2019 12:00 57.2 san_francisco 6:54 AM 12

7/5/2019 12:00 55.4 san_francisco 8:06 AM 13



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 36/52

In [ ]: #

⌨ Let's see how we can get the first 5 rows of our data from, but using the .iloc[] method:

sf_weather.iloc[:5]

In [ ]: #

⌨ Now, let's see how we can return the first 3 rows and the first 10 columns in the dataframe:

sf_weather.iloc[[0,1,2],:10]

Out[ ]: maxtempC                    11
mintempC                     5
maxtempF                  51.8
mintempF                  41.0
tempC                       11
tempF                     51.8
moonrise               3:17 AM
moonset                2:10 PM
sunrise                7:25 AM
sunset                 5:02 PM
FeelsLikeC                  11
WindGustKmph                22
winddirDegree               49
windspeedKmph               12
location         san_francisco
Name: 1/1/2019 12:00, dtype: object

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7

1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 37/52

In [ ]: #

⌨ Now create the last 3 rows and the last 10 columns

In [ ]: #

As you can see above, using the iloc method might be a little easier to select multiple rows/columns by using the
slicing of indexes method. This way we wouldn't have to pass each column or row name by label.

⌨ Next, let's create a smaller dataframe by assigning the first twenty rows of sf_weather  with .head(n=20)
to begin_sf_weather  ...

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

Out[ ]:
tempF moonrise moonset sunrise sunset FeelsLikeC WindGustKmph winddirDegr

date_time

12/29/2019
12:00 51.8 10:09 AM 8:32 PM 7:25

AM
4:59
PM 10 14 1

12/30/2019
12:00 55.4 10:42 AM 9:31 PM 7:25

AM
5:00
PM 13 4 3

12/31/2019
12:00 55.4 11:12 AM 10:28

PM
7:25
AM

5:01
PM 13 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 38/52

In [ ]: #

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7

1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM 7

1/6/2019
12:00 13 8 55.4 46.4 12 53.6 7:54 AM 5:54 PM 7

1/7/2019
12:00 13 7 55.4 44.6 13 55.4 8:37 AM 6:48 PM 7

1/8/2019
12:00 13 9 55.4 48.2 13 55.4 9:15 AM 7:44 PM 7

1/9/2019
12:00 13 10 55.4 50.0 13 55.4 9:50 AM 8:40 PM 7

1/10/2019
12:00 12 9 53.6 48.2 12 53.6 10:20 AM 9:37 PM 7

1/11/2019
12:00 12 8 53.6 46.4 12 53.6 10:50 AM 10:33

PM
7

1/12/2019
12:00 13 8 55.4 46.4 12 53.6 11:18 AM 11:30

PM
7

1/13/2019
12:00 13 8 55.4 46.4 12 53.6 11:46 AM No

moonset
7

1/14/2019
12:00 12 8 53.6 46.4 12 53.6 12:15 PM 12:28

AM
7

1/15/2019
12:00 11 11 51.8 51.8 11 51.8 12:48 PM 1:29 AM 7

1/16/2019
12:00 13 9 55.4 48.2 13 55.4 1:24 PM 2:32 AM 7

1/17/2019
12:00 13 10 55.4 50.0 13 55.4 2:07 PM 3:38 AM 7

1/18/2019
12:00 12 8 53.6 46.4 12 53.6 2:57 PM 4:45 AM 7

1/19/2019
12:00 15 9 59.0 48.2 15 59.0 3:56 PM 5:52 AM 7

1/20/2019
12:00 13 10 55.4 50.0 12 53.6 5:03 PM 6:54 AM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 39/52

⌨ ... and write it out to a csv:

begin_sf_weather.to_csv("pdData/begin_sf_weather.csv")

In [ ]: #

⌨ Using either the .loc[] method or the .iloc[] method create a CSV (using the .to_csv  method) from the
sf_weather  dataframe that contains rows 15-20 ( 15:21 ) and the first 10 columns. Name the output
ten1520.csv .

Remember to save into the pdData  folder as we did above.

In [ ]: #

Selecting columns or rows?
The syntax for selecting columns looks a lot like selection rows. The key difference in the methods we've just
looked at is if you're using

.loc / .iloc  for rows
or not, for columns

⌨ The following examples illustrate this. First we'll create a simple DataFrame with x, y, z columns and a, b, c
rows:

df = pd.DataFrame({"x":pd.Series({'a':1,'b':2,'c':3}),
                  "y":pd.Series({'a':4,'b':5,'c':6}),
                  "z":pd.Series({'a':7,'b':8,'c':9})})
df

In [ ]: #

⌨ Now we'll select two columns with df[['x','y']]

Out[ ]:
x y z

a 1 4 7

b 2 5 8

c 3 6 9



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 40/52

In [ ]: #

⌨ Then select two rows with df.loc[['b','c']]

In [ ]: #

As you can see above, the methods do look a lot alike, but working with rows uses some form of loc .

⌨ We could even do both to get an intersection  of the data structure, with

df[['x','y']].loc[['b','c']]

In [ ]: #

Descriptive statistics

Out[ ]:
x y

a 1 4

b 2 5

c 3 6

Out[ ]:
x y z

b 2 5 8

c 3 6 9

Out[ ]:
x y

b 2 5

c 3 6



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 41/52

We can use various functions exposed to us through pandas to run get descriptive statistics for our series. A list
of some of these statistics, most of which are obvious what they do:

count
sum
mean
median
min
max
mode  : returns a series of modes
prod  : product
mad  mean absolute deviation
sem  standard error of the mean
std  sample standard deviation
var
sem  standard error of the mean
skew  skewness (3rd moment)
kurt  kurtosis (4th moment)
cumsum  cumulative sum
cumprod
cummax
cummin

⌨ First, let's create a series with modes and get its mean with:

aSeries = pd.Series([1,3,3,5,7,7,9,11,11,13])
aSeries.mean()

... and also get the mode (which may return multiple values).

In [ ]: #

⌨ Then derive some other summary statistics.

In [ ]: #

In [ ]: #

Out[ ]: 7.0

Out[ ]: 0     3
1     7
2    11
dtype: int64

Out[ ]: 1.2649110640673518

Out[ ]: 4.0



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 42/52

In [ ]: #

All of the above were for a single series.

⌨ If we use these methods with a DataFrame, all series are described using the specified statistic:

sf_weather.mean()

In [ ]: #

⌨ Do the same for standard deviation (std):

Out[ ]: 0     1
1     4
2     7
3    12
4    19
5    26
6    35
7    46
8    57
9    70
dtype: int64

C:\Users\900008452\AppData\Local\Temp\ipykernel_24480\513922073.py:2: FutureW
arning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o
nly=None') is deprecated; in a future version this will raise TypeError.  Sel
ect only valid columns before calling the reduction.
 sf_weather.mean()

Out[ ]: maxtempC          18.150685
mintempC          12.600000
maxtempF          64.671233
mintempF          54.680000
tempC             17.353425
tempF             63.236164
FeelsLikeC        17.391781
WindGustKmph      14.860274
winddirDegree    203.501370
windspeedKmph     11.863014
dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 43/52

In [ ]: #

⌨ If we pass just the column to the function we can get the values returned on the column. For example, if I
wanted to see the max time for sunset I would pass this function:

sf_weather['sunset'].max()

In [ ]: #

⌨ Then to see the earliest sunset all year we'd use min  instead

In [ ]: #

⌨ What if we wanted to see the mean and standard deviation of lowest temperature all year:

In [ ]: #

⌨ Now use the .describe()  method on the same DataFrame series to show all these statistics for
mintempF . (Hint: the command looks the same as deriving the .mean()  or .std() , just uses
.describe() .

C:\Users\900008452\AppData\Local\Temp\ipykernel_24480\194938136.py:2: FutureW
arning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o
nly=None') is deprecated; in a future version this will raise TypeError.  Sel
ect only valid columns before calling the reduction.
 sf_weather.std()

Out[ ]: maxtempC          4.673608
mintempC          3.796904
maxtempF          8.412495
mintempF          6.834428
tempC             4.599752
tempF             8.279553
FeelsLikeC        5.008502
WindGustKmph      9.659573
winddirDegree    83.522506
windspeedKmph     5.994308
dtype: float64

Out[ ]: '7:36 PM'

Out[ ]: '4:50 PM'

Out[ ]: (54.67999999999999, 6.83442803703474)



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 44/52

In [ ]: #

Creating graphs with Pandas

There are some advanced operations with generating graphs using some other libraries, but Pandas provides
some basic graphing capabilities right out of the box without needing to import additional libraries.

⌨ Below is a simple example of generating a new dataframe that contains only the January datafrom from our
sf_weather dataframe and then plots it:

jan_sf_weather = sf_weather.head(n=31)
jan_sf_weather

Out[ ]: count    365.000000
mean      54.680000
std        6.834428
min       37.400000
25%       50.000000
50%       55.400000
75%       59.000000
max       73.400000
Name: mintempF, dtype: float64



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 45/52

In [ ]: #



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 46/52

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/1/2019
12:00 11 5 51.8 41.0 11 51.8 3:17 AM 2:10 PM 7

1/2/2019
12:00 10 5 50.0 41.0 9 48.2 4:17 AM 2:47 PM 7

1/3/2019
12:00 11 5 51.8 41.0 10 50.0 5:17 AM 3:28 PM 7

1/4/2019
12:00 12 6 53.6 42.8 11 51.8 6:13 AM 4:13 PM 7

1/5/2019
12:00 13 8 55.4 46.4 13 55.4 7:06 AM 5:02 PM 7

1/6/2019
12:00 13 8 55.4 46.4 12 53.6 7:54 AM 5:54 PM 7

1/7/2019
12:00 13 7 55.4 44.6 13 55.4 8:37 AM 6:48 PM 7

1/8/2019
12:00 13 9 55.4 48.2 13 55.4 9:15 AM 7:44 PM 7

1/9/2019
12:00 13 10 55.4 50.0 13 55.4 9:50 AM 8:40 PM 7

1/10/2019
12:00 12 9 53.6 48.2 12 53.6 10:20 AM 9:37 PM 7

1/11/2019
12:00 12 8 53.6 46.4 12 53.6 10:50 AM 10:33

PM
7

1/12/2019
12:00 13 8 55.4 46.4 12 53.6 11:18 AM 11:30

PM
7

1/13/2019
12:00 13 8 55.4 46.4 12 53.6 11:46 AM No

moonset
7

1/14/2019
12:00 12 8 53.6 46.4 12 53.6 12:15 PM 12:28

AM
7

1/15/2019
12:00 11 11 51.8 51.8 11 51.8 12:48 PM 1:29 AM 7

1/16/2019
12:00 13 9 55.4 48.2 13 55.4 1:24 PM 2:32 AM 7

1/17/2019
12:00 13 10 55.4 50.0 13 55.4 2:07 PM 3:38 AM 7

1/18/2019
12:00 12 8 53.6 46.4 12 53.6 2:57 PM 4:45 AM 7

1/19/2019
12:00 15 9 59.0 48.2 15 59.0 3:56 PM 5:52 AM 7

1/20/2019
12:00 13 10 55.4 50.0 12 53.6 5:03 PM 6:54 AM 7

1/21/2019
12:00 12 8 53.6 46.4 12 53.6 6:15 PM 7:50 AM 7

1/22/2019
12:00 13 8 55.4 46.4 12 53.6 7:30 PM 8:39 AM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 47/52

⌨ Plot the data setting the y axis to the maxtempF field from our data frame:

jan_sf_weather.plot(y = ['maxtempF'], figsize = (15,15))

maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

1/23/2019
12:00 12 7 53.6 44.6 12 53.6 8:42 PM 9:22 AM 7

1/24/2019
12:00 13 9 55.4 48.2 12 53.6 9:53 PM 9:59 AM 7

1/25/2019
12:00 14 7 57.2 44.6 13 55.4 11:01 PM 10:33

AM
7

1/26/2019
12:00 15 9 59.0 48.2 14 57.2 No

moonrise 11:06 AM 7

1/27/2019
12:00 15 8 59.0 46.4 14 57.2 12:06 AM 11:39 AM 7

1/28/2019
12:00 14 10 57.2 50.0 13 55.4 1:10 AM 12:12

PM
7

1/29/2019
12:00 13 10 55.4 50.0 13 55.4 2:11 AM 12:49

PM
7

1/30/2019
12:00 13 10 55.4 50.0 13 55.4 3:11 AM 1:28 PM 7

1/31/2019
12:00 14 11 57.2 51.8 13 55.4 4:08 AM 2:11 PM 7



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 48/52

In [ ]: #

⌨ Plot the mintempF for the month of February.

Out[ ]: <AxesSubplot: xlabel='date_time'>



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 49/52

In [ ]: #



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 50/52

Out[ ]:
maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

2/1/2019
12:00 13 10 55.4 50.0 13 55.4 5:02 AM 2:58 PM 7

2/2/2019
12:00 12 10 53.6 50.0 12 53.6 5:51 AM 3:49 PM 7

2/3/2019
12:00 12 10 53.6 50.0 12 53.6 6:35 AM 4:42 PM 7

2/4/2019
12:00 9 8 48.2 46.4 9 48.2 7:15 AM 5:38 PM

2/5/2019
12:00 10 6 50.0 42.8 10 50.0 7:51 AM 6:33 PM 7

2/6/2019
12:00 10 5 50.0 41.0 9 48.2 8:22 AM 7:30 PM 7

2/7/2019
12:00 10 5 50.0 41.0 10 50.0 8:52 AM 8:26 PM 7

2/8/2019
12:00 11 7 51.8 44.6 10 50.0 9:21 AM 9:23 PM 7

2/9/2019
12:00 11 8 51.8 46.4 11 51.8 9:49 AM 10:20

PM
7

2/10/2019
12:00 10 7 50.0 44.6 9 48.2 10:17 AM 11:19

PM
7

2/11/2019
12:00 11 6 51.8 42.8 10 50.0 10:47 AM No

moonset
7

2/12/2019
12:00 11 7 51.8 44.6 11 51.8 11:21 AM 12:19

AM
7

2/13/2019
12:00 14 11 57.2 51.8 14 57.2 11:59 AM 1:22 AM 7

2/14/2019
12:00 14 11 57.2 51.8 11 51.8 12:43 PM 2:26 AM 7

2/15/2019
12:00 11 9 51.8 48.2 11 51.8 1:37 PM 3:31 AM 6

2/16/2019
12:00 11 9 51.8 48.2 10 50.0 2:38 PM 4:33 AM 6

2/17/2019
12:00 9 7 48.2 44.6 9 48.2 3:47 PM 5:32 AM 6

2/18/2019
12:00 12 5 53.6 41.0 10 50.0 5:00 PM 6:24 AM 6

2/19/2019
12:00 11 5 51.8 41.0 10 50.0 6:15 PM 7:11 AM 6

2/20/2019
12:00 11 6 51.8 42.8 11 51.8 7:29 PM 7:51 AM 6

2/21/2019
12:00 11 6 51.8 42.8 10 50.0 8:40 PM 8:28 AM 6

2/22/2019
12:00 10 5 50.0 41.0 9 48.2 9:50 PM 9:03 AM 6



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 51/52

maxtempC mintempC maxtempF mintempF tempC tempF moonrise moonset sun

date_time

2/23/2019
12:00 12 5 53.6 41.0 11 51.8 10:57 PM 9:37 AM 6

2/24/2019
12:00 11 8 51.8 46.4 11 51.8 No

moonrise 10:11 AM 6

2/25/2019
12:00 11 4 51.8 39.2 10 50.0 12:01 AM 10:47

AM
6

2/26/2019
12:00 12 3 53.6 37.4 12 53.6 1:04 AM 11:26 AM 6

2/27/2019
12:00 14 9 57.2 48.2 14 57.2 2:03 AM 12:08

PM
6

2/28/2019
12:00 14 10 57.2 50.0 13 55.4 2:58 AM 12:55

PM
6

Out[ ]: <AxesSubplot: xlabel='date_time'>



1/27/24, 2:49 PM Ex04_Pandas_intro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex04_Pandas_intro_results.html 52/52

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

☑ Code to just run, typically boilerplate.

⌨ Coding you need to write, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Prompt for an interpretation or the answer to a question.

In [ ]:



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 1/50

Exercise 05: Pandas Data Transformation
In the previous exercise we were introduced to the Pandas Python library and we explored the various ways of
loading data into a dataframe and accessing certain rows and columns from that dataframe to create new
dataframes. In this exercise we'll explore some more advanced methods in the Pandas library for accessing and
manipulating data.

We'll also look at the various methods for combining and merging multiple dataframes.

Concepts covered in the exercise include:

Adding and dropping columns and rows
Working with null values in a dataframe
Filtering dataframes with various queries
Iterating over dataframes (looping over values)
Group by, sum, sort and assign methods
Join, Merge, and Concat multiple dataframes

Data we'll be exploring
For this exercise, we'll make use of some open data from the City & County of San Francisco hosted at
https://datasf.org/opendata/ (https://datasf.org/opendata/) . Some former students from our program who've gone
on to work for the city have been instrumental in making these data available. This is a great resource for your
own research and coursework, and was suggested by another former student from our program, Dara O'Beirne,
who's now working for the state in Sacramento and sometimes teaches this class and this lab is based on one he
created for the class.

From that data source, we'll look at Bay Area unemployment data and we'll work on manipulating that data to be
able to analyze questions, however we won't focus as much on the questions (those are for you to consider) as
much as on the transformation methods. We'll loosely look at transformations that help to understand the effect
of COVID on unemployment (and one of the variables is pandemic specific), but there's a lot more you can do
with this and other data at the site. In the geopandas lab, we'll look at 311 data from that same source to look at
parking incidents by neighborhood, and rely on latitude and longitude fields to map them.

Dataframe Row/Column Manipulation and Filtering

⌨ Let's begin by importing both the pandas and matplotlib libraries:

import pandas as pd
import matplotlib.pyplot as plt

In [ ]: #

https://datasf.org/opendata/
https://datasf.org/opendata/


1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 2/50

Parsing Dates
We'll start by simply reading unemployment data, including COVID-related claims, without any special settings or
transformations. Explore information about this dataset at https://data.sfgov.org/Economy-and-
Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4 (https://data.sfgov.org/Economy-
and-Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4) where you'll see that:

UI_Claims are the "Number of new weekly Unemployment Insurance (UI) claims filed with EDD (Includes
new, additional, transitional, and PUA claims)"

EDD: California Economic Development Department
PUA_Claims : "Breakout of the number of new weekly Pandemic Unemployment Assistance (PUA) claims
filled [sic] with EDD."

⌨

bayArea_unemployment_noparse = pd.read_csv('pdData/Unemployment_BA_Counties_2020_20
2105.csv')
bayArea_unemployment_noparse

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 1/11/2020 Alameda 1487 0

1 1/11/2020 Contra Costa 1073 0

2 1/11/2020 Marin 144 0

3 1/11/2020 Napa 162 0

4 1/11/2020 San Francisco 945 0

... ... ... ... ...

652 5/29/2021 San Francisco 3878 233

653 5/29/2021 San Mateo 2346 140

654 5/29/2021 Santa Clara 5307 419

655 5/29/2021 Solano 1580 140

656 5/29/2021 Sonoma 1410 126

657 rows × 4 columns

https://data.sfgov.org/Economy-and-Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4
https://data.sfgov.org/Economy-and-Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4
https://data.sfgov.org/Economy-and-Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4
https://data.sfgov.org/Economy-and-Community/Unemployment-Insurance-Weekly-Claims-for-Bay-Area-/d98w-yij4


1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 3/50

⌨ Next, we'll create a dataframe that contains the unemployment claims filed during Covid, for each county in
the Bay Area, but parse the dates as dates.

bayArea_unemployment = pd.read_csv('pdData/Unemployment_BA_Counties_2020_202105.cs
v', parse_dates= ["Week_Ending"])
bayArea_unemployment

In [ ]: #

❔ Why do we pass "Week_Ending" to the parse_dates parameter?

Answer: We want to use Week_Ending as a date. Without this, it's just a string.

Dropping columns and rows
Earlier, we selected columns using a list desired, and used .iloc and .loc to select rows. Similarly, we can use
.drop to drop either columns or rows, but here we use We used .select and The .drop  method ⌨ Once we've
loaded all the data into the dataframe, let's drop a column from the dataframe. I'll create a new dataframe called
"bay_unemployment_noPUA", that doesn't contain the dropped column:

bayArea_unemployment_noPUA = bayArea_unemployment.drop(columns = ["PUA_Claims"])
bayArea_unemployment_noPUA

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

1 2020-01-11 Contra Costa 1073 0

2 2020-01-11 Marin 144 0

3 2020-01-11 Napa 162 0

4 2020-01-11 San Francisco 945 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

657 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 4/50

In [ ]: #

⌨ Notice that if we re-examine the original dataframe it still contains the columns we dropped, remember it's
important to reassign that operation you do onto a dataframe to a new dataframe:

bayArea_unemployment

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims

0 2020-01-11 Alameda 1487

1 2020-01-11 Contra Costa 1073

2 2020-01-11 Marin 144

3 2020-01-11 Napa 162

4 2020-01-11 San Francisco 945

... ... ... ...

652 2021-05-29 San Francisco 3878

653 2021-05-29 San Mateo 2346

654 2021-05-29 Santa Clara 5307

655 2021-05-29 Solano 1580

656 2021-05-29 Sonoma 1410

657 rows × 3 columns

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

1 2020-01-11 Contra Costa 1073 0

2 2020-01-11 Marin 144 0

3 2020-01-11 Napa 162 0

4 2020-01-11 San Francisco 945 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

657 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 5/50

Drop a row using an index
First let's check the syntax usage for .drop by typing...

bayArea_unemployment.drop

and pressing shift-tab when the cursor is at the end of .drop .

(To get more detailed information, put the above into help() )

⌨ ... then noting that axis=0 (rows) is the default, just provide the numeric index 0  as the sole input to
bayArea_unemployment.drop( ... ) , even though it may be confusing to say that the index 0  is a label

(remember that if the parameter isn't specified, the first thing provided is assigned to the first parameter, which in
this case is labels .)

In [ ]: #

⌨ Checking the usage again with shift-tab, and noting the index  parameter which applies to rows, we can see
that we can use the .drop() method to drop a list of rows, so use this to drop index = [0,1,2,3] :

bayArea_unemployment_drop4 = bayArea_unemployment.drop(index = [0,1,2,3])
bayArea_unemployment_drop4

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

1 2020-01-11 Contra Costa 1073 0

2 2020-01-11 Marin 144 0

3 2020-01-11 Napa 162 0

4 2020-01-11 San Francisco 945 0

5 2020-01-11 San Mateo 467 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

656 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 6/50

In [ ]: #

⌨ Then we can drop the first 50 rows by using a slicing method on the index. Assign the result to
bayArea_unemployment_drop50  with our same input, but instead of listing the indices, use a slice: (index = 
bayArea_unemployment.index[:50])

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

4 2020-01-11 San Francisco 945 0

5 2020-01-11 San Mateo 467 0

6 2020-01-11 Santa Clara 1443 0

7 2020-01-11 Solano 678 0

8 2020-01-11 Sonoma 558 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

653 rows × 4 columns

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

50 2020-02-15 San Mateo 509 0

51 2020-02-15 Santa Clara 1395 0

52 2020-02-15 Solano 535 0

53 2020-02-15 Sonoma 411 0

54 2020-02-22 Alameda 1046 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

607 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 7/50

Insert a column
This is a common need when doing analysis: creating a new variable (column) from existing data. There are
multiple ways of doing this.

⌨ One simple way of inserting a new column and populating it with data is to essentially assign something to a
new variable (column) that we name in the []  accessor of the data frame. It inserts that new column at the end
of the dataframe. In this example every row within our new column will have the same value (which we've
provided hard-coded, but this method would also work if you were to derive that from another source/input), and
we might be later merging rows with data from other regions.

region = "Bay Area"
bayArea_unemployment["Region Name"] = region
bayArea_unemployment

In [ ]: #

⌨ In addition we can use the .insert()  method to insert a field into a dataframe at a specific location, in this
case as the second column (at the 1 position):

state = "California"
bayArea_unemployment.insert(1, "State", state)
bayArea_unemployment

Out[ ]:
Week_Ending County UI_Claims PUA_Claims Region Name

0 2020-01-11 Alameda 1487 0 Bay Area

1 2020-01-11 Contra Costa 1073 0 Bay Area

2 2020-01-11 Marin 144 0 Bay Area

3 2020-01-11 Napa 162 0 Bay Area

4 2020-01-11 San Francisco 945 0 Bay Area

... ... ... ... ... ...

652 2021-05-29 San Francisco 3878 233 Bay Area

653 2021-05-29 San Mateo 2346 140 Bay Area

654 2021-05-29 Santa Clara 5307 419 Bay Area

655 2021-05-29 Solano 1580 140 Bay Area

656 2021-05-29 Sonoma 1410 126 Bay Area

657 rows × 5 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 8/50

In [ ]: #

⌨ Insert another column called Country  and set it to "United States" . Put Country  just after State .

In [ ]: #

Out[ ]:
Week_Ending State County UI_Claims PUA_Claims Region Name

0 2020-01-11 California Alameda 1487 0 Bay Area

1 2020-01-11 California Contra Costa 1073 0 Bay Area

2 2020-01-11 California Marin 144 0 Bay Area

3 2020-01-11 California Napa 162 0 Bay Area

4 2020-01-11 California San Francisco 945 0 Bay Area

... ... ... ... ... ... ...

652 2021-05-29 California San Francisco 3878 233 Bay Area

653 2021-05-29 California San Mateo 2346 140 Bay Area

654 2021-05-29 California Santa Clara 5307 419 Bay Area

655 2021-05-29 California Solano 1580 140 Bay Area

656 2021-05-29 California Sonoma 1410 126 Bay Area

657 rows × 6 columns

Out[ ]:
Week_Ending Country State County UI_Claims PUA_Claims Region Name

0 2020-01-11 United States California Alameda 1487 0 Bay Area

1 2020-01-11 United States California Contra Costa 1073 0 Bay Area

2 2020-01-11 United States California Marin 144 0 Bay Area

3 2020-01-11 United States California Napa 162 0 Bay Area

4 2020-01-11 United States California San Francisco 945 0 Bay Area

... ... ... ... ... ... ... ...

652 2021-05-29 United States California San Francisco 3878 233 Bay Area

653 2021-05-29 United States California San Mateo 2346 140 Bay Area

654 2021-05-29 United States California Santa Clara 5307 419 Bay Area

655 2021-05-29 United States California Solano 1580 140 Bay Area

656 2021-05-29 United States California Sonoma 1410 126 Bay Area

657 rows × 7 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 9/50

Adding rows
⌨ Adding a new row by using the append method. The new row of data should be formatted with key:value
pairs representing each column heading and row value, respectively:

new_row = {"Week_Ending": "2020-11-28", "Country":"United States", "State":"Califor
nia",
          "County":"Marin", "UI_Claims": 450, "PUA_Claims":50, "Region Name":"Bay 
Area"}

In [ ]: #

➦ Then check the usage of .append using either shift-tab or help. Note what it says about the usage and the first
parameter other :

Append rows of other  to the end of caller, returning a new object.

... and what it says about the second parameter ignore_index  which by default is False  but we want to set
to True.

⌨ Note that we'll assign the output to the same object (while the documentation says it will be a new object), so
it replaces it:

bay_area_unemployment = bayArea_unemployment.append(new_row, ignore_index=True)
bay_area_unemployment



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 10/50

In [ ]: #

❔ What is the data type of the "new_row" above?

Answer: dict

Filtering
Filtering lets you select rows, based either on indices or values in fields.

⌨ Moving forward, recreate the dataframe bayArea_unemployment  from the source CSV. Use the code we
created earlier that reads the CSV and parses the dates.

C:\Users\900008452\AppData\Local\Temp\ipykernel_10588\4119025374.py:2: Future
Warning: The frame.append method is deprecated and will be removed from panda
s in a future version. Use pandas.concat instead.
 bay_area_unemployment = bayArea_unemployment.append(new_row, ignore_index=T
rue)

Out[ ]:

Week_Ending Country State County UI_Claims PUA_Claims Region
Name

0 2020-01-11
00:00:00

United
States California Alameda 1487 0 Bay Area

1 2020-01-11
00:00:00

United
States California Contra

Costa 1073 0 Bay Area

2 2020-01-11
00:00:00

United
States California Marin 144 0 Bay Area

3 2020-01-11
00:00:00

United
States California Napa 162 0 Bay Area

4 2020-01-11
00:00:00

United
States California San

Francisco 945 0 Bay Area

... ... ... ... ... ... ... ...

653 2021-05-29
00:00:00

United
States California San Mateo 2346 140 Bay Area

654 2021-05-29
00:00:00

United
States California Santa Clara 5307 419 Bay Area

655 2021-05-29
00:00:00

United
States California Solano 1580 140 Bay Area

656 2021-05-29
00:00:00

United
States California Sonoma 1410 126 Bay Area

657 2020-11-28 United
States California Marin 450 50 Bay Area

658 rows × 7 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 11/50

In [ ]: #

⌨ Define a filter (mask) and assign it to the alameda variable, this is called creating a mask. We are creating the
mask that we can apply to the dataframe that will conduct the desired filter:

alameda = bayArea_unemployment["County"]=="Alameda"
alameda

In [ ]: #

⌨ Pass the filter to the larger dataframe to get only Alameda data returned:

alameda_unemployment = bayArea_unemployment[alameda]
alameda_unemployment

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

1 2020-01-11 Contra Costa 1073 0

2 2020-01-11 Marin 144 0

3 2020-01-11 Napa 162 0

4 2020-01-11 San Francisco 945 0

... ... ... ... ...

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

657 rows × 4 columns

Out[ ]: 0       True
1      False
2      False
3      False
4      False
      ...  
652    False
653    False
654    False
655    False
656    False
Name: County, Length: 657, dtype: bool



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 12/50

In [ ]: #

⌨ Filtering using the .eq() method:

alameda_unemployment = bayArea_unemployment[bayArea_unemployment.County.eq("Alamed
a")]
alameda_unemployment

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

9 2020-01-18 Alameda 1817 0

18 2020-01-25 Alameda 1350 0

27 2020-02-01 Alameda 1265 0

36 2020-02-08 Alameda 1328 0

... ... ... ... ...

612 2021-05-01 Alameda 5789 567

621 2021-05-08 Alameda 5544 580

630 2021-05-15 Alameda 5538 587

639 2021-05-22 Alameda 6892 507

648 2021-05-29 Alameda 5664 495

73 rows × 4 columns

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

9 2020-01-18 Alameda 1817 0

18 2020-01-25 Alameda 1350 0

27 2020-02-01 Alameda 1265 0

36 2020-02-08 Alameda 1328 0

... ... ... ... ...

612 2021-05-01 Alameda 5789 567

621 2021-05-08 Alameda 5544 580

630 2021-05-15 Alameda 5538 587

639 2021-05-22 Alameda 6892 507

648 2021-05-29 Alameda 5664 495

73 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 13/50

⌨ Using either approach, create a san_francisco_unemployment

Be careful with spaces and underscores...

In [ ]: #

⌨ Filtering on multiple values using .isin

The .isin  method is nice when you have a list of values for a given field you want.

Let's try this with county names. We'll create a list of two county names with

marin_sf = ["San Francisco", "Marin"]

... then see what you get with

bayArea_unemployment.County.isin(marin_sf)

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

4 2020-01-11 San Francisco 945 0

13 2020-01-18 San Francisco 965 0

22 2020-01-25 San Francisco 739 0

31 2020-02-01 San Francisco 801 0

40 2020-02-08 San Francisco 824 0

... ... ... ... ...

616 2021-05-01 San Francisco 4040 336

625 2021-05-08 San Francisco 3791 367

634 2021-05-15 San Francisco 3909 397

643 2021-05-22 San Francisco 4619 281

652 2021-05-29 San Francisco 3878 233

73 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 14/50

In [ ]:

So this is a mask of rows, which can be used to filter the rows by applying it to bayArea_unemployment[ ... ] .
We'll then assign the output to marin_sf_unemployment .

It may seem a little weird to seem to access the same data twice with
bayArea_unemployment[bayArea_unemployment.County.isin(marin_sf)]  but this is commonly done and

it's just a way of nesting operations.

⌨ To maybe help visualize this, the following methods are equivalent, so use either one:

theMask = bayArea_unemployment.County.isin(marin_sf)
marin_sf_unemployment = bayArea_unemployment[theMask]

marin_sf_unemployment = bayArea_unemployment[bayArea_unemployment.County.isin(marin
_sf)]

Out[ ]: 0      False
1      False
2       True
3      False
4       True
      ...  
652     True
653    False
654    False
655    False
656    False
Name: County, Length: 657, dtype: bool



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 15/50

In [ ]: #

⌨ Filtering on a not ( != )condition, meaning returning everything that does not meet a value or values:

#select everything except that does not equal two counties
not_marin_sf_unemployment = bayArea_unemployment[(bayArea_unemployment.County != "S
an Francisco") & (bayArea_unemployment.County != "Marin")]
not_marin_sf_unemployment

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

2 2020-01-11 Marin 144 0

4 2020-01-11 San Francisco 945 0

11 2020-01-18 Marin 202 0

13 2020-01-18 San Francisco 965 0

20 2020-01-25 Marin 146 0

... ... ... ... ...

634 2021-05-15 San Francisco 3909 397

641 2021-05-22 Marin 812 79

643 2021-05-22 San Francisco 4619 281

650 2021-05-29 Marin 635 70

652 2021-05-29 San Francisco 3878 233

146 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 16/50

In [ ]: #

Create a dataframe from filtered data
⌨ Create a dataframe of the unemployment data that does not include Alameda County and Santa Clara.

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

0 2020-01-11 Alameda 1487 0

1 2020-01-11 Contra Costa 1073 0

3 2020-01-11 Napa 162 0

5 2020-01-11 San Mateo 467 0

6 2020-01-11 Santa Clara 1443 0

... ... ... ... ...

651 2021-05-29 Napa 392 42

653 2021-05-29 San Mateo 2346 140

654 2021-05-29 Santa Clara 5307 419

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

511 rows × 4 columns

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

1 2020-01-11 Contra Costa 1073 0

2 2020-01-11 Marin 144 0

3 2020-01-11 Napa 162 0

4 2020-01-11 San Francisco 945 0

5 2020-01-11 San Mateo 467 0

... ... ... ... ...

651 2021-05-29 Napa 392 42

652 2021-05-29 San Francisco 3878 233

653 2021-05-29 San Mateo 2346 140

655 2021-05-29 Solano 1580 140

656 2021-05-29 Sonoma 1410 126

511 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 17/50

Dataframe Iterating, Groupby, Summary Stats, Sort, and
Assigning

Groupby combined with summary statistic
One important use of the groupby method is to derive a summary statistic for a grouping. You might use it to
derive the mean values by county or some other categorical field in the data frame. Let's create a simple
example so we can see how it works.

Start by building the sierra  data we built in the previous exercise. Use the version with dictionaries so you'll
have named row indices for the stations, and end up with columns in the order elevation,temperature,latitude.

In [ ]: #

We don't have a categorical variable in our data, so we'll create one "highElev" that has True for elevations >
1000 and False for not. (In R, we'd call this a factor.)

Out[ ]:
elevation temperature latitude

Oroville 52 10.7 39.52

Auburn 394 9.7 38.91

Sonora 510 7.7 37.97

Placerville 564 9.2 38.70

Colfax 725 7.3 39.09

Nevada City 848 6.7 39.25

Quincy 1042 4.0 39.94

Yosemite 1225 5.0 37.75

Sierraville 1516 0.9 40.35

Truckee 1775 -1.1 39.33

Tahoe City 1899 -0.8 39.17

Bodie 2551 -4.4 38.21



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 18/50

In [ ]: #

Now we'll create a small dataframe where a summary statistic is derived for each variable by group. We'll just
derive the mean values, but we could instead derive other statistics.

sierraElevGroup = sierra.groupby("highElev").mean()
sierraElevGroup

In [ ]: #

Continuing with the bayArea_unemployment data
⌨ Sorting a dataframe on a field:

#sorting dataframe
sorted_unemployment = bayArea_unemployment.sort_values(by='UI_Claims', ascending=Tr
ue)
sorted_unemployment

Out[ ]:
elevation temperature latitude highElev

Oroville 52 10.7 39.52 False

Auburn 394 9.7 38.91 False

Sonora 510 7.7 37.97 False

Placerville 564 9.2 38.70 False

Colfax 725 7.3 39.09 False

Nevada City 848 6.7 39.25 False

Quincy 1042 4.0 39.94 True

Yosemite 1225 5.0 37.75 True

Sierraville 1516 0.9 40.35 True

Truckee 1775 -1.1 39.33 True

Tahoe City 1899 -0.8 39.17 True

Bodie 2551 -4.4 38.21 True

Out[ ]:
elevation temperature latitude

highElev

False 515.5 8.55 38.906667

True 1668.0 0.60 39.125000



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 19/50

In [ ]: #

Iterating a dataframe
⌨ One other way to scroll through a dataframe by row, probably to do something with each step, is to iterate it
with a for  loop and the .iterrows()  method, which you should learn about with either Shift-tab or help() to
understand what the following is doing. Each iteration provides the row index and the row of data as a series with
each of field names as indices. For example, to display the rows of sierra:

for index, row in sierra.iterrows():
   print(index)
   print(row)

Out[ ]:
Week_Ending County UI_Claims PUA_Claims

57 2020-02-22 Napa 100 0

48 2020-02-15 Napa 115 0

75 2020-03-07 Napa 115 0

39 2020-02-08 Napa 130 0

66 2020-02-29 Napa 130 0

... ... ... ... ...

100 2020-03-28 Contra Costa 32426 0

114 2020-04-04 Santa Clara 38511 0

108 2020-04-04 Alameda 38645 0

99 2020-03-28 Alameda 46056 0

105 2020-03-28 Santa Clara 49472 0

657 rows × 4 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 20/50

In [ ]:



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 21/50

Oroville
elevation         52
temperature     10.7
latitude       39.52
highElev       False
Name: Oroville, dtype: object
Auburn
elevation        394
temperature      9.7
latitude       38.91
highElev       False
Name: Auburn, dtype: object
Sonora
elevation        510
temperature      7.7
latitude       37.97
highElev       False
Name: Sonora, dtype: object
Placerville
elevation        564
temperature      9.2
latitude        38.7
highElev       False
Name: Placerville, dtype: object
Colfax
elevation        725
temperature      7.3
latitude       39.09
highElev       False
Name: Colfax, dtype: object
Nevada City
elevation        848
temperature      6.7
latitude       39.25
highElev       False
Name: Nevada City, dtype: object
Quincy
elevation       1042
temperature      4.0
latitude       39.94
highElev        True
Name: Quincy, dtype: object
Yosemite
elevation       1225
temperature      5.0
latitude       37.75
highElev        True
Name: Yosemite, dtype: object
Sierraville
elevation       1516
temperature      0.9
latitude       40.35
highElev        True
Name: Sierraville, dtype: object
Truckee
elevation       1775
temperature     -1.1



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 22/50

Using a condition in an iterrows :

Now we'll look at our bayArea_unemployment data, which is much larger so we might want to only print (or do
something else with) by setting a condition. Note in the code below how you're doing something if  the
condition is true. In this case, we're just printing something out, but you might imagine a situation where you do
something else with each selected record, which is where iteration becomes most useful. We'll see examples of
doing this in arcpy when we're using cursors to manipulate individual geometries.

for index, row in bayArea_unemployment.iterrows():
   if row["UI_Claims"] > 20000:
       print (row["County"], row["UI_Claims"])

In [ ]: #

latitude       39.33
highElev        True
Name: Truckee, dtype: object
Tahoe City
elevation       1899
temperature     -0.8
latitude       39.17
highElev        True
Name: Tahoe City, dtype: object
Bodie
elevation       2551
temperature     -4.4
latitude       38.21
highElev        True
Name: Bodie, dtype: object

Alameda 46056
Contra Costa 32426
San Francisco 26889
Santa Clara 49472
Alameda 38645
Contra Costa 26648
San Francisco 24040
Santa Clara 38511
Alameda 27574
Santa Clara 27906
Alameda 22842
Santa Clara 22920
Alameda 26991
Santa Clara 25577
Alameda 26274
Alameda 28748



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 23/50

Using groupby  to created stratified summary statistics
⌨ Using the groupby  function to create a new dataframe based on groups (and next we'll sum those values).
Note that the groups are displayed here as a list of indices that belong to that group.

#groupby in a dataframe
unemployment_by_county = bayArea_unemployment.groupby("County")
unemployment_by_county.groups



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 24/50

In [ ]: #

❔ Using type() , what type of object did we create for the .groupby  result and the .groups  result? :

⛬ Interpret the readout above, and consider whether it's any different from a regular dictionary. Remember that a
list can be a value. Review our earlier discussion about the two uses of dictionaries in GIS data analysis. What
does this one represent? :

Out[ ]: {'Alameda': [0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 13
5, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 
279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 41
4, 423, 432, 441, 450, 459, 468, 477, 486, 495, 504, 513, 522, 531, 540, 549, 
558, 567, 576, 585, 594, 603, 612, 621, 630, 639, 648], 'Contra Costa': [1, 1
0, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 16
3, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 
307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 44
2, 451, 460, 469, 478, 487, 496, 505, 514, 523, 532, 541, 550, 559, 568, 577, 
586, 595, 604, 613, 622, 631, 640, 649], 'Marin': [2, 11, 20, 29, 38, 47, 56, 
65, 74, 83, 92, 101, 110, 119, 128, 137, 146, 155, 164, 173, 182, 191, 200, 2
09, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 34
4, 353, 362, 371, 380, 389, 398, 407, 416, 425, 434, 443, 452, 461, 470, 479, 
488, 497, 506, 515, 524, 533, 542, 551, 560, 569, 578, 587, 596, 605, 614, 62
3, 632, 641, 650], 'Napa': [3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 102, 1
11, 120, 129, 138, 147, 156, 165, 174, 183, 192, 201, 210, 219, 228, 237, 24
6, 255, 264, 273, 282, 291, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 
390, 399, 408, 417, 426, 435, 444, 453, 462, 471, 480, 489, 498, 507, 516, 52
5, 534, 543, 552, 561, 570, 579, 588, 597, 606, 615, 624, 633, 642, 651], 'Sa
n Francisco': [4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130, 
139, 148, 157, 166, 175, 184, 193, 202, 211, 220, 229, 238, 247, 256, 265, 27
4, 283, 292, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391, 400, 409, 
418, 427, 436, 445, 454, 463, 472, 481, 490, 499, 508, 517, 526, 535, 544, 55
3, 562, 571, 580, 589, 598, 607, 616, 625, 634, 643, 652], 'San Mateo': [5, 1
4, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 16
7, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 
311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 44
6, 455, 464, 473, 482, 491, 500, 509, 518, 527, 536, 545, 554, 563, 572, 581, 
590, 599, 608, 617, 626, 635, 644, 653], 'Santa Clara': [6, 15, 24, 33, 42, 5
1, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 
204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 33
9, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 
483, 492, 501, 510, 519, 528, 537, 546, 555, 564, 573, 582, 591, 600, 609, 61
8, 627, 636, 645, 654], 'Solano': [7, 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 
106, 115, 124, 133, 142, 151, 160, 169, 178, 187, 196, 205, 214, 223, 232, 24
1, 250, 259, 268, 277, 286, 295, 304, 313, 322, 331, 340, 349, 358, 367, 376, 
385, 394, 403, 412, 421, 430, 439, 448, 457, 466, 475, 484, 493, 502, 511, 52
0, 529, 538, 547, 556, 565, 574, 583, 592, 601, 610, 619, 628, 637, 646, 65
5], 'Sonoma': [8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, 
143, 152, 161, 170, 179, 188, 197, 206, 215, 224, 233, 242, 251, 260, 269, 27
8, 287, 296, 305, 314, 323, 332, 341, 350, 359, 368, 377, 386, 395, 404, 413, 
422, 431, 440, 449, 458, 467, 476, 485, 494, 503, 512, 521, 530, 539, 548, 55
7, 566, 575, 584, 593, 602, 611, 620, 629, 638, 647, 656]}



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 25/50

In [ ]: #

Derive a summary statistic from the group

Various summary statistics can be derived, such as mean, median, std, sum, max, min, by applying that to the
groupby  object just created. For instance, the mean is unemployment_by_count.mean() .

⌨ Derive the sum of the claims, probably the most useful, since it'll be the total claims per county, and assign it
to unemployment_by_county .

In [ ]: #

⌨ We can also combine the operations to go directly from the unemployment data to the sum:

bayArea_unemployment.groupby("County").sum()

Out[ ]: pandas.io.formats.printing.PrettyDict

Out[ ]:
UI_Claims PUA_Claims

County

Alameda 740263 170528

Contra Costa 503377 111380

Marin 87088 18838

Napa 64668 9219

San Francisco 416169 84599

San Mateo 282089 43713

Santa Clara 691576 116923

Solano 217828 48366

Sonoma 207900 36821



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 26/50

In [ ]: #

⌨ ... then we can sort to see the county with the most unemployment claims in order:

sorted_unemployment_by_county = unemployment_by_county.sort_values(by='UI_Claims', 
ascending=False)
sorted_unemployment_by_county

In [ ]: #

Out[ ]:
UI_Claims PUA_Claims

County

Alameda 740263 170528

Contra Costa 503377 111380

Marin 87088 18838

Napa 64668 9219

San Francisco 416169 84599

San Mateo 282089 43713

Santa Clara 691576 116923

Solano 217828 48366

Sonoma 207900 36821

Out[ ]:
UI_Claims PUA_Claims

County

Alameda 740263 170528

Santa Clara 691576 116923

Contra Costa 503377 111380

San Francisco 416169 84599

San Mateo 282089 43713

Solano 217828 48366

Sonoma 207900 36821

Marin 87088 18838

Napa 64668 9219



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 27/50

Calculating fields:

The .assign  method
⌨ Using the assign method, we will calculate the difference of UI Claims to PUA Claims for each row:

#Dataframe assign method
bayArea_unemployment.assign( PUA_UI_DIFF = bayArea_unemployment.UI_Claims - bayArea
_unemployment.PUA_Claims)

In [ ]: #

Assigning a Boolean
⌨ With the assign method, we can assign True  or False  by testing a condition, in this case whether there
are any PUA_claims:

bayArea_unemployment.assign(has_pua_claims = bayArea_unemployment['PUA_Claims'] > 
0)

Out[ ]:
Week_Ending County UI_Claims PUA_Claims PUA_UI_DIFF

0 2020-01-11 Alameda 1487 0 1487

1 2020-01-11 Contra Costa 1073 0 1073

2 2020-01-11 Marin 144 0 144

3 2020-01-11 Napa 162 0 162

4 2020-01-11 San Francisco 945 0 945

... ... ... ... ... ...

652 2021-05-29 San Francisco 3878 233 3645

653 2021-05-29 San Mateo 2346 140 2206

654 2021-05-29 Santa Clara 5307 419 4888

655 2021-05-29 Solano 1580 140 1440

656 2021-05-29 Sonoma 1410 126 1284

657 rows × 5 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 28/50

In [ ]: #

⌨ Write an assign statement that calculates a true value on a column called "high_pua_claims" where the the
value is greater than 500.

In [ ]: #

Out[ ]:
Week_Ending County UI_Claims PUA_Claims has_pua_claims

0 2020-01-11 Alameda 1487 0 False

1 2020-01-11 Contra Costa 1073 0 False

2 2020-01-11 Marin 144 0 False

3 2020-01-11 Napa 162 0 False

4 2020-01-11 San Francisco 945 0 False

... ... ... ... ... ...

652 2021-05-29 San Francisco 3878 233 True

653 2021-05-29 San Mateo 2346 140 True

654 2021-05-29 Santa Clara 5307 419 True

655 2021-05-29 Solano 1580 140 True

656 2021-05-29 Sonoma 1410 126 True

657 rows × 5 columns

Out[ ]:
Week_Ending County UI_Claims PUA_Claims high_pua_claims

0 2020-01-11 Alameda 1487 0 False

1 2020-01-11 Contra Costa 1073 0 False

2 2020-01-11 Marin 144 0 False

3 2020-01-11 Napa 162 0 False

4 2020-01-11 San Francisco 945 0 False

... ... ... ... ... ...

652 2021-05-29 San Francisco 3878 233 False

653 2021-05-29 San Mateo 2346 140 False

654 2021-05-29 Santa Clara 5307 419 False

655 2021-05-29 Solano 1580 140 False

656 2021-05-29 Sonoma 1410 126 False

657 rows × 5 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 29/50

Concat, Plot, Join, and Merge Dataframes

In this section we'll take a look at conducting concats, merges, and joins on various tables. When you work with
data, sometimes the data might exist in multiple tables and being able to conduct joins on your data is powerful.
In this section we'll be looking at population data from two different time periods, that include multiple geographic
regions. The tables that begin with "us_pop" contain population data from all 50 states within the United States.
And the tables that begin with "americas_pop" contain population data from various Countries throughout North,
Central, and South America.

⌨ First, we'll create four separate dataframes from our source data. Make sure you've downloaded these csv
files from iLearn and have placed them your py\Ex10 folder:

us_pop_00_09 = pd.read_csv("pdData/us_population_2000_to_09.csv", index_col="Name")
us_pop_10_19 = pd.read_csv("pdData/us_population_2010_to_19.csv", index_col="Name")
americas_pop_00_09 = pd.read_csv("pdData/america_population_2000_to_09.csv", index_
col="Name")
americas_pop_10_19 = pd.read_csv("pdData/america_population_2010_to_19.csv", index_
col="Name")

In [ ]: #

⌨ Have a look at the dataframe of Americas population from 2000 to 2009.



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 30/50

In [ ]: #



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 31/50

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2

Name

Mexico North
America 98899845 100298153 101684758 103081020 104514932 106005203 107560

Canada North
America 30588383 30880073 31178263 31488048 31815494 32164309 32536

Colombia South
America 39629968 40255967 40875360 41483869 42075955 42647723 43200

Venezuela South
America 24192446 24646472 25100408 25551624 25996594 26432447 26850

Costa
Rica

Central
America 3962372 4034074 4100925 4164053 4225155 4285502 4345

Guatemala Central
America 11650743 11924946 12208848 12500478 12796925 13096028 13397

Brazil South
America 174790340 177196054 179537520 181809246 184006481 186127103 188167

Argentina South
America 36870787 37275652 37681749 38087868 38491972 38892931 39289

Chile South
America 15342353 15516113 15684409 15849652 16014971 16182721 16354

Belize Central
America 247315 255063 262378 269425 276504 283800 291

El
Salvador

Central
America 5887936 5927006 5962136 5994077 6023797 6052123 6079

Honduras Central
America 6574509 6751912 6929265 7106319 7282953 7458985 7634

Nicaragua Central
America 5069302 5145366 5219328 5292118 5364935 5438690 5513

Panama Central
America 3030328 3089648 3149188 3209048 3269356 3330217 3391

Bolivia South
America 8418264 8580235 8742814 8905823 9069039 9232306 9395

Ecuador South
America 12681123 12914667 13143465 13369678 13596388 13825847 14059

Guyana South
America 746715 745206 744789 745143 745737 746163 746

Paraguay South
America 5323201 5428444 5531962 5632983 5730549 5824096 5913

Peru South
America 26459944 26799285 27100968 27372226 27624213 27866145 28102

Suriname South
America 470949 476579 482235 487942 493679 499464 505

Uruguay South
America 3319736 3325473 3326040 3323668 3321476 3321803 3325

Venezuela South
America 24192446 24646472 25100408 25551624 25996594 26432447 26850



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 32/50

⌨ To see the dataypes of each field in your dataframe:

americas_pop_00_09.dtypes

In [ ]: #

Then we can examine all the fields within our dataframes. In the earlier Pandas lab, we looked at indices and
columns as a pandas.core.indexes.base.Index  object.

⌨ Use .columns  to get the column names of americas_pop_00_09 . We're not needing this now, but as a
refresher, use .index  to see those.

In [ ]: #

In [ ]: #

⌨ Let's make a dataframe that just contains the south american populations from 2000 - 2009

south_america_00_09 = americas_pop_00_09[americas_pop_00_09.Region.eq("South Americ
a")]
print(south_america_00_09.dtypes)
south_america_00_09

Out[ ]: Region    object
2000       int64
2001       int64
2002       int64
2003       int64
2004       int64
2005       int64
2006       int64
2007       int64
2008       int64
2009       int64
dtype: object

Out[ ]: Index(['Region', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
      '2007', '2008', '2009'],
     dtype='object')

Out[ ]: Index(['Mexico', 'Canada', 'Colombia', 'Venezuela', 'Costa Rica', 'Guatemal
a',
      'Brazil', 'Argentina', 'Chile', 'Belize', 'El Salvador', 'Honduras',
      'Nicaragua', 'Panama', 'Bolivia', 'Ecuador', 'Guyana', 'Paraguay',
      'Peru', 'Suriname', 'Uruguay', 'Venezuela'],
     dtype='object', name='Name')



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 33/50

In [ ]: #

Region    object
2000       int64
2001       int64
2002       int64
2003       int64
2004       int64
2005       int64
2006       int64
2007       int64
2008       int64
2009       int64
dtype: object

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 20

Name

Colombia South
America 39629968 40255967 40875360 41483869 42075955 42647723 432008

Venezuela South
America 24192446 24646472 25100408 25551624 25996594 26432447 26850

Brazil South
America 174790340 177196054 179537520 181809246 184006481 186127103 1881673

Argentina South
America 36870787 37275652 37681749 38087868 38491972 38892931 392898

Chile South
America 15342353 15516113 15684409 15849652 16014971 16182721 163545

Bolivia South
America 8418264 8580235 8742814 8905823 9069039 9232306 93954

Ecuador South
America 12681123 12914667 13143465 13369678 13596388 13825847 140593

Guyana South
America 746715 745206 744789 745143 745737 746163 7463

Paraguay South
America 5323201 5428444 5531962 5632983 5730549 5824096 59132

Peru South
America 26459944 26799285 27100968 27372226 27624213 27866145 281020

Suriname South
America 470949 476579 482235 487942 493679 499464 5052

Uruguay South
America 3319736 3325473 3326040 3323668 3321476 3321803 33254

Venezuela South
America 24192446 24646472 25100408 25551624 25996594 26432447 26850



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 34/50

⌨ Next we're going to create a new dataframe for the purpose of plotting our data:

south_america_forplot = south_america_00_09.drop(columns=["Region"])
south_america_forplot

In [ ]: #

⌨ Now just call the .plot() method against the data.

south_america_forplot.plot()

Out[ ]:
2000 2001 2002 2003 2004 2005 2006

Name

Colombia 39629968 40255967 40875360 41483869 42075955 42647723 43200897 437

Venezuela 24192446 24646472 25100408 25551624 25996594 26432447 26850194 272

Brazil 174790340 177196054 179537520 181809246 184006481 186127103 188167356 1901

Argentina 36870787 37275652 37681749 38087868 38491972 38892931 39289878 396

Chile 15342353 15516113 15684409 15849652 16014971 16182721 16354504 165

Bolivia 8418264 8580235 8742814 8905823 9069039 9232306 9395446 95

Ecuador 12681123 12914667 13143465 13369678 13596388 13825847 14059384 142

Guyana 746715 745206 744789 745143 745737 746163 746343 7

Paraguay 5323201 5428444 5531962 5632983 5730549 5824096 5913209 59

Peru 26459944 26799285 27100968 27372226 27624213 27866145 28102056 283

Suriname 470949 476579 482235 487942 493679 499464 505295 5

Uruguay 3319736 3325473 3326040 3323668 3321476 3321803 3325401 33

Venezuela 24192446 24646472 25100408 25551624 25996594 26432447 26850194 272



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 35/50

In [ ]: #

Transposing to improve the plot
⌨ We notice this plot isn't very useful, as a line plot varying by country, and the differences from year to year are
barely visible, so instead we'll tranpose the data:

south_america_forplot.transpose().plot(title='South America Population 2000 - 200
9', figsize=(20,15))

Out[ ]: <AxesSubplot: xlabel='Name'>



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 36/50

In [ ]: #
south_america_forplot.transpose().plot(title='South America Population 2000 - 
2009', figsize=(20,15))

Create plot
⌨ Now create the same plot that we did above, but this time create it with the data from Central America.

Out[ ]: <AxesSubplot: title={'center': 'South America Population 2000 - 2009'}>



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 37/50

In [ ]: #

Out[ ]: <AxesSubplot: xlabel='Name'>



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 38/50

In [ ]: #

Using concat  and groupby  to derive the total population by year for the North
America 2000-2009
The concat  method lets you combine rows from datsets that are structured similarly.

For our task, we'll use data from two different tables (Americas and US) for the first decade of the 21st century.

We'll use:

americas_pop_00_09 , which contains population for countries in North, South and Central America
(excluding the United States)
us_pop_00_09 , which has United States population by state.

⌨ And for that decade, start with pulling out North America from the Americas data:

north_america_00_09 = americas_pop_00_09[americas_pop_00_09.Region.eq("North Americ
a")]
north_america_00_09

Out[ ]: <AxesSubplot: >



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 39/50

In [ ]: #

⌨ Let's take a look at the US Population data now:

us_pop_00_09

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2006

Name

Mexico North
America 98899845 100298153 101684758 103081020 104514932 106005203 107560153

Canada North
America 30588383 30880073 31178263 31488048 31815494 32164309 32536987



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 40/50

In [ ]: #



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 41/50

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2006

Name

Alabama North
America 4452173 4467634 4480089 4503491 4530729 4569805 4628981

Alaska North
America 627963 633714 642337 648414 659286 666946 675302

Arizona North
America 5160586 5273477 5396255 5510364 5652404 5839077 6029141

Arkansas North
America 2678588 2691571 2705927 2724816 2749686 2781097 2821761

California North
America 33987977 34479458 34871843 35253159 35574576 35827943 36021202

Colorado North
America 4326921 4425687 4490406 4528732 4575013 4631888 4720423

Connecticut North
America 3411777 3432835 3458749 3484336 3496094 3506956 3517460

Delaware North
America 786373 795699 806169 818003 830803 845150 859268

District of
Columbia

North
America 572046 574504 573158 568502 567754 567136 570681

Florida North
America 16047515 16356966 16689370 17004085 17415318 17842038 18166990

Georgia North
America 8227303 8377038 8508256 8622793 8769252 8925922 9155813

Hawaii North
America 1213519 1225948 1239613 1251154 1273569 1292729 1309731

Idaho North
America 1299430 1319962 1340372 1363380 1391802 1428241 1468669

Illinois North
America 12434161 12488445 12525556 12556006 12589773 12609903 12643955

Indiana North
America 6091866 6127760 6155967 6196638 6233007 6278616 6332669

Iowa North
America 2929067 2931997 2934234 2941999 2953635 2964454 2982644

Kansas North
America 2693681 2702162 2713535 2723004 2734373 2745299 2762931

Kentucky North
America 4049021 4068132 4089875 4117170 4146101 4182742 4219239

Louisiana North
America 4471885 4477875 4497267 4521042 4552238 4576628 4302665

Maine North
America 1277072 1285692 1295960 1306513 1313688 1318787 1323619

Maryland North
America 5311034 5374691 5440389 5496269 5546935 5592379 5627367

Massachusetts North
America 6361104 6397634 6417206 6422565 6412281 6403290 6410084



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 42/50

Region 2000 2001 2002 2003 2004 2005 2006

Name

Michigan North
America 9952450 9991120 10015710 10041152 10055315 10051137 10036081

Minnesota North
America 4933692 4982796 5018935 5053572 5087713 5119598 5163555

Mississippi North
America 2848353 2852994 2858681 2868312 2889010 2905943 2904978

Missouri North
America 5607285 5641142 5674825 5709403 5747741 5790300 5842704

Montana North
America 903773 906961 911667 919630 930009 940102 952692

Nebraska North
America 1713820 1719836 1728292 1738643 1749370 1761497 1772693

Nevada North
America 2018741 2098399 2173791 2248850 2346222 2432143 2522658

New
Hampshire

North
America 1239882 1255517 1269089 1279840 1290121 1298492 1308389

New Jersey North
America 8430621 8492671 8552643 8601402 8634561 8651974 8661679

New Mexico North
America 1821204 1831690 1855309 1877574 1903808 1932274 1962137

New York North
America 19001780 19082838 19137800 19175939 19171567 19132610 19104631

North Carolina North
America 8081614 8210122 8326201 8422501 8553152 8705407 8917270

North Dakota North
America 642023 639062 638168 638817 644705 646089 649422

Ohio North
America 11363543 11387404 11407889 11434788 11452251 11463320 11481213

Oklahoma North
America 3454365 3467100 3489080 3504892 3525233 3548597 3594090

Oregon North
America 3429708 3467937 3513424 3547376 3569463 3613202 3670883

Pennsylvania North
America 12284173 12298970 12331031 12374658 12410722 12449990 12510809

Rhode Island North
America 1050268 1057142 1065995 1071342 1074579 1067916 1063096

South Carolina North
America 4024223 4064995 4107795 4150297 4210921 4270150 4357847

South Dakota North
America 755844 757972 760020 763729 770396 775493 783033

Tennessee North
America 5703719 5750789 5795918 5847812 5910809 5991057 6088766

Texas North
America 20944499 21319622 21690325 22030931 22394023 22778123 23359580

Utah North
America 2244502 2283715 2324815 2360137 2401580 2457719 2525507



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 43/50

⌨ We can use the group by function to group all data in "us_pop_00_09"

all_us_00_09 = us_pop_00_09.groupby("Region", as_index = False).sum()
all_us_00_09

In [ ]: #

⌨ Notice when we did the group by and sum, it set the index to the Region column and we lost "Name", the
previous index. So in order to concat the two tables, let's set the index in our north_america_00_09 table to
"Region".

all_us_00_09.set_index("Region")

In [ ]: #

Region 2000 2001 2002 2003 2004 2005 2006

Name

Vermont North
America 609618 612223 615442 617858 619920 621215 622892

Virginia North
America 7105817 7198362 7286873 7366977 7475575 7577105 7673725

Washington North
America 5910512 5985722 6052349 6104115 6178645 6257305 6370753

West Virginia North
America 1807021 1801481 1805414 1812295 1816438 1820492 1827912

Wisconsin North
America 5373999 5406835 5445162 5479203 5514026 5546166 5577655

Wyoming North
America 494300 494657 500017 503453 509106 514157 522667

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2006

0 North
America 282162411 284968955 287625193 290107933 292805298 295516599 298379912 3012

Out[ ]:
2000 2001 2002 2003 2004 2005 2006 2

Region

North
America 282162411 284968955 287625193 290107933 292805298 295516599 298379912 301231



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 44/50

⌨ Set index on north america data

north_america_00_09.set_index("Region")

In [ ]: #

⌨ Now we can concat the two datasets to get Canada, Mexico and the US:

all_nAmerica = pd.concat([north_america_00_09, all_us_00_09])
all_nAmerica.set_index("Region")

In [ ]: #

⌨ Then do a final sum to get all population in North America:

total_north_america_pop = all_nAmerica.groupby("Region", as_index = False).sum()
total_north_america_pop

In [ ]:

Out[ ]:
2000 2001 2002 2003 2004 2005 2006 20

Region

North
America 98899845 100298153 101684758 103081020 104514932 106005203 107560153 1091705

North
America 30588383 30880073 31178263 31488048 31815494 32164309 32536987 329307

Out[ ]:
2000 2001 2002 2003 2004 2005 2006 2

Region

North
America 98899845 100298153 101684758 103081020 104514932 106005203 107560153 109170

North
America 30588383 30880073 31178263 31488048 31815494 32164309 32536987 32930

North
America 282162411 284968955 287625193 290107933 292805298 295516599 298379912 301231

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2006

0 North
America 411650639 416147181 420488214 424677001 429135724 433686111 438477052 4433



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 45/50

Combine the decades with .merge
⌨ Next, we'll concat the two tables for each set of date ranges. So, we'll first concat the Americas population
from 2000 - 2009 with the US population from 2000-2009:

all_00_09 = pd.concat([americas_pop_00_09, us_pop_00_09])
all_00_09

In [ ]: #

⌨ Then we'll concat data tables for the same regions from 2010 to 2019:

all_10_19 = pd.concat([americas_pop_10_19, us_pop_10_19])
all_10_19

Out[ ]:
Region 2000 2001 2002 2003 2004 2005 2

Name

Mexico North
America 98899845 100298153 101684758 103081020 104514932 106005203 107560

Canada North
America 30588383 30880073 31178263 31488048 31815494 32164309 32536

Colombia South
America 39629968 40255967 40875360 41483869 42075955 42647723 43200

Venezuela South
America 24192446 24646472 25100408 25551624 25996594 26432447 26850

Costa Rica Central
America 3962372 4034074 4100925 4164053 4225155 4285502 4345

... ... ... ... ... ... ... ...

Virginia North
America 7105817 7198362 7286873 7366977 7475575 7577105 7673

Washington North
America 5910512 5985722 6052349 6104115 6178645 6257305 6370

West
Virginia

North
America 1807021 1801481 1805414 1812295 1816438 1820492 1827

Wisconsin North
America 5373999 5406835 5445162 5479203 5514026 5546166 5577

Wyoming North
America 494300 494657 500017 503453 509106 514157 522

73 rows × 11 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 46/50

In [ ]: #

⌨ Now that we have these two new datasets, we can run a pd.merge() operation, which has the usage:

result = pd.merge(left DataFrame, right DataFrame, left_index=False, right_index=Fa
lse, how='inner')

With the merge function, the first two parameters will always be the left and right dataframes. For our purpose,
we want to set "left_index=True" and "right_index=True" to specify that the indices will be our key values and we
can retrain the Countries as the index. Finally, we pass in "how='right'" to indicate a right join.

merged_df = pd.merge(all_00_09, all_10_19, left_index=True, right_index=True, how
='right')
merged_df

Out[ ]:
Region 2010 2011 2012 2013 2014 2015 2

Name

Mexico North
America 114092963 115695473 117274155 118827161 120355128 121858258 123333

Canada North
America 34147564 34539159 34922030 35296528 35664337 36026676 36382

Colombia South
America 45222700 45662748 46075718 46495493 46967696 47520667 48175

Venezuela South
America 28439940 28887874 29360837 29781040 30042968 30081829 2985

Costa Rica Central
America 4577378 4633086 4688000 4742107 4795396 4847804 4899

... ... ... ... ... ... ... ...

Virginia North
America 8023699 8101155 8185080 8252427 8310993 8361808 8410

Washington North
America 6742830 6826627 6897058 6963985 7054655 7163657 7294

West
Virginia

North
America 1854239 1856301 1856872 1853914 1849489 1842050 183

Wisconsin North
America 5690475 5705288 5719960 5736754 5751525 5760940 5772

Wyoming North
America 564487 567299 576305 582122 582531 585613 584

73 rows × 11 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 47/50

In [ ]: #

.join()

⌨ Above was the merge method, which gives you a lot of ability to do different types of joins and to join on
different fields if you want. Next, we'll look at the very straightforward and simple Join operation.

It is useful to use the ".join()" method if you know you want to join on the index field and your data is relatively
clean and straightforward, with the usage:

result = DataFrame.join([other DataFrame], how='inner', on=None)

The DataFrame.join() method lets us use dot notation on our left table, then pass in the right table and how as an
argument. This eliminates the need to specify the right and left index arguments like we did in the previous
function. If on=None, the join key will be the row index. Let’s observe how the nulls are affecting our analysis by
taking a look at the DataFrame head.

joined_df = all_00_09.join(all_10_19, how='right',lsuffix='_left', rsuffix='_right')
joined_df

Out[ ]:
Region_x 2000 2001 2002 2003 2004 2005 2006

Name

Alabama North
America 4452173 4467634 4480089 4503491 4530729 4569805 4628981

Alaska North
America 627963 633714 642337 648414 659286 666946 675302

Argentina South
America 36870787 37275652 37681749 38087868 38491972 38892931 39289878

Arizona North
America 5160586 5273477 5396255 5510364 5652404 5839077 6029141

Arkansas North
America 2678588 2691571 2705927 2724816 2749686 2781097 2821761

... ... ... ... ... ... ... ... ...

Virginia North
America 7105817 7198362 7286873 7366977 7475575 7577105 7673725

Washington North
America 5910512 5985722 6052349 6104115 6178645 6257305 6370753

West
Virginia

North
America 1807021 1801481 1805414 1812295 1816438 1820492 1827912

Wisconsin North
America 5373999 5406835 5445162 5479203 5514026 5546166 5577655

Wyoming North
America 494300 494657 500017 503453 509106 514157 522667

75 rows × 22 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 48/50

In [ ]: #

Create and plot a joined dataframe
⌨ Create a dataframe that is a sum of joined_df by Region and plot it using the matplotlib library.

Out[ ]:
Region_left 2000 2001 2002 2003 2004 2005 2006

Name

Alabama North
America 4452173 4467634 4480089 4503491 4530729 4569805 4628981

Alaska North
America 627963 633714 642337 648414 659286 666946 675302

Argentina South
America 36870787 37275652 37681749 38087868 38491972 38892931 39289878

Arizona North
America 5160586 5273477 5396255 5510364 5652404 5839077 6029141

Arkansas North
America 2678588 2691571 2705927 2724816 2749686 2781097 2821761

... ... ... ... ... ... ... ... ..

Virginia North
America 7105817 7198362 7286873 7366977 7475575 7577105 7673725

Washington North
America 5910512 5985722 6052349 6104115 6178645 6257305 6370753

West
Virginia

North
America 1807021 1801481 1805414 1812295 1816438 1820492 1827912

Wisconsin North
America 5373999 5406835 5445162 5479203 5514026 5546166 5577655

Wyoming North
America 494300 494657 500017 503453 509106 514157 522667

75 rows × 22 columns



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 49/50

In [ ]: # 
joined_plot = joined_df.groupby("Region_left").sum().transpose().rename_axis
("year")
joined_plot.plot()

Review of what we've learned
In this exercise, we've used several methods to transform data:

Along the way we've also looked at
Parsing dates

Out[ ]: <AxesSubplot: xlabel='year'>



1/27/24, 2:49 PM Ex05_Pandas_Transformations_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex05_Pandas_Transformations_results.html 50/50

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

☑ Code to just run, typically boilerplate.

⌨ Coding you need to write, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Similar to a question, but requesting an interpretation you need to provide, in the same markdown cell

In [ ]:



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 1/45

Introduction to GeoPandas
Before you begin this exercise make sure you have all of the installation working; this should have happened the
first week. Also, make sure you have downloaded the data from iLearn and placed the data in the "geodata"
folder where the project folder is with the python files". To complete this exercise make sure you have this data in
that geodata folder:

owid-covid-data.csv
World_Map.shp
BA_Counties.shp
sf_neighborhoods.shp
SF_Nov20_311.csv

In this exercise we will be working on the GeoPandas library. GeoPandas is an effective open source python
library for analyzing large amounts of tabular and in particular, spatial data. GeoPandas adds a spatial geometry
data type to Pandas and enables spatial operations on these types, using shapely
(https://github.com/Toblerity/Shapely). GeoPandas leverages Pandas together with several core open source
geospatial packages and practices to provide a uniquely simple and convenient framework for handling
geospatial feature data, operating on both geometries and attributes jointly, and as with Pandas, largely
eliminating the need to iterate over features (rows).

GeoPandas builds on mature, stable and widely used packages (Pandas, shapely, etc). It is being supported
more and more as a preferred Python data structure for geospatial vector data, and a useful tool for exploratory
spatial data analysis.

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

⌨ First, import the pandas library as pd and matplotlib.pyplot as plt

import pandas as pd
import matplotlib.pyplot as plt

In [ ]: #

I. Mapping World COVID Data by Country

In this first section we will be using Global COVID data to make a map of cases and deaths by country. The data
were downloaded from [Our World in Data] on 5 May 2022 (https://ourworldindata.org/coronavirus-source-data
(https://ourworldindata.org/coronavirus-source-data)) as owid-covid-data.csv . You should have downloaded
this file from iLearn and placed it in your working project directory for this exercise, in the geodata  folder.

https://github.com/Toblerity/Shapely
https://github.com/Toblerity/Shapely
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 2/45

Initial dataframe processing
⌨ Create a dataframe called 'all_data' by using pd.read_csv  with that CSV (remember to include the folder
"geodata" in the path):

In [ ]: #

❔ What is the data type for the "all_data" object above?

⛬

Out[ ]:
iso_code continent location date total_cases new_cases new_cases_smoothed to

0 AFG Asia Afghanistan 2020-
02-24 5.0 5.0 NaN

1 AFG Asia Afghanistan 2020-
02-25 5.0 0.0 NaN

2 AFG Asia Afghanistan 2020-
02-26 5.0 0.0 NaN

3 AFG Asia Afghanistan 2020-
02-27 5.0 0.0 NaN

4 AFG Asia Afghanistan 2020-
02-28 5.0 0.0 NaN

... ... ... ... ... ... ... ...

166093 ZWE Africa Zimbabwe 2022-
02-28 236380.0 577.0 401.286

166094 ZWE Africa Zimbabwe 2022-
03-01 236871.0 491.0 413.000

166095 ZWE Africa Zimbabwe 2022-
03-02 237503.0 632.0 416.286

166096 ZWE Africa Zimbabwe 2022-
03-03 237503.0 0.0 362.286

166097 ZWE Africa Zimbabwe 2022-
03-04 238739.0 1236.0 467.429

166098 rows × 67 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 3/45

Group by year with sums
⌨ We'll group by country next to start our analysis, but we it might be useful to also look at the covid data
grouped by year as the total for each year and then displayed by country. We'll also want to filter the columns
(axis=1) to not get sums of totals which are already accumulated values. We could have also used the .drop()
method, but filtering columns is less code since there are fewer to retain than to drop. We'll also have a new
dataframe with a new name. We'll also rename the columns since now the new cases and new deaths represent
totals.

Note that both location and date are indices.

all_data['date'] = pd.to_datetime(all_data['date'])
all_data = all_data.filter(['location', "date", "new_cases", "new_deaths"],  axis=
1)
year_grpd = all_data.groupby(['location',all_data['date'].dt.year]).sum()
year_grpd.columns = ['TotalCases', 'TotalDeaths']
year_grpd

In [ ]: #

Out[ ]:
TotalCases TotalDeaths

location date

Afghanistan 2020 52332.0 2189.0

2021 105754.0 5167.0

2022 16136.0 263.0

Africa 2020 2760926.0 65507.0

2021 6977423.0 163031.0

... ... ... ...

Zambia 2021 233549.0 3346.0

2022 59339.0 224.0

Zimbabwe 2020 13873.0 363.0

2021 199391.0 4641.0

2022 25481.0 393.0

693 rows × 2 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 4/45

Reduce the dataframe to totals for locations

⌨ Use another .groupby() and .sum() to end up with total cases and deaths by location.

grouped_data = year_grpd.groupby('location').sum()
grouped_data

In [ ]: #

⌨ If we want to rename our dataframe's index then we can use the .index.names property to assign the desired
value to our index column (note that this is different from .set_index which makes a field the index; we're just
renaming the existing index). In this example below, we're going to use the word 'NAME' for the location field.

world_covid_cases.index.names = ['NAME']
world_covid_cases

Out[ ]:
TotalCases TotalDeaths

location

Afghanistan 174222.0 7619.0

Africa 11247473.0 248869.0

Albania 272030.0 3478.0

Algeria 265186.0 6852.0

Andorra 38434.0 151.0

... ... ...

Wallis and Futuna 454.0 7.0

World 442613253.0 5964020.0

Yemen 11775.0 2135.0

Zambia 313613.0 3958.0

Zimbabwe 238745.0 5397.0

238 rows × 2 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 5/45

In [ ]: #

⌨ Enter and execute the code that would show all the datatypes ( .dtype ) in the world_covid_cases object
above.

In [ ]: #

Load spatial data for geopandas and merge with our COVID
data
⌨ Before we move forward in our data manipulation, let's load the shapefile of all countries in the world and
then plot this shape file. We'll now start using geopandas so we'll need to import it.

import geopandas as gpd
world_data = gpd.read_file('geodata/World_Map.shp')
world_data.plot()

Out[ ]:
TotalCases TotalDeaths

NAME

Afghanistan 174222.0 7619.0

Africa 11247473.0 248869.0

Albania 272030.0 3478.0

Algeria 265186.0 6852.0

Andorra 38434.0 151.0

... ... ...

Wallis and Futuna 454.0 7.0

World 442613253.0 5964020.0

Yemen 11775.0 2135.0

Zambia 313613.0 3958.0

Zimbabwe 238745.0 5397.0

238 rows × 2 columns

Out[ ]: TotalCases     float64
TotalDeaths    float64
dtype: object



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 6/45

In [ ]: #

Then as a dataframe, just world_data

In [ ]: #

Out[ ]: <AxesSubplot: >

Out[ ]:
NAME geometry

0 Antigua and Barbuda MULTIPOLYGON (((-61.68667 17.02444, -61.73806 ...

1 Algeria POLYGON ((2.96361 36.80222, 2.98139 36.80694, ...

2 Azerbaijan MULTIPOLYGON (((45.08332 39.76804, 45.26639 39...

3 Albania POLYGON ((19.43621 41.02107, 19.45055 41.06000...

4 Armenia MULTIPOLYGON (((45.57305 40.63249, 45.52888 40...

... ... ...

240 Saint Barthelemy POLYGON ((-63.02834 18.01555, -63.03334 18.015...

241 Guernsey POLYGON ((-2.59083 49.42249, -2.59722 49.42249...

242 Jersey POLYGON ((-2.01500 49.21416, -2.02111 49.17722...

243 South Georgia South Sandwich Islands MULTIPOLYGON (((-27.32584 -59.42722, -27.29806...

244 Taiwan MULTIPOLYGON (((121.57639 22.00139, 121.57027 ...

245 rows × 2 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 7/45

⌨ Next, we'd like to compare the values that exist within our World shape country names with the names in our
World Covid list. First, we'll loop over each Name within the "world_covid_cases" dataframe, by passing the
index field to the .tolist() method. Then we'll generate a list from the World Shpae file and only print out the
values that do not exist within both lists.

world_data_list = world_data['NAME'].tolist()
for item in world_covid_cases.index.tolist():   
   if not(item in world_data_list):
       print(item + ' is not in the world data list')

In [ ]: #

Africa is not in the world data list
Asia is not in the world data list
Bonaire Sint Eustatius and Saba is not in the world data list
Brunei is not in the world data list
Curacao is not in the world data list
Czechia is not in the world data list
Democratic Republic of Congo is not in the world data list
Eswatini is not in the world data list
Europe is not in the world data list
European Union is not in the world data list
Faeroe Islands is not in the world data list
Falkland Islands is not in the world data list
High income is not in the world data list
International is not in the world data list
Iran is not in the world data list
Kosovo is not in the world data list
Laos is not in the world data list
Libya is not in the world data list
Low income is not in the world data list
Lower middle income is not in the world data list
Macao is not in the world data list
Micronesia (country) is not in the world data list
Moldova is not in the world data list
Myanmar is not in the world data list
North America is not in the world data list
North Macedonia is not in the world data list
Northern Cyprus is not in the world data list
Oceania is not in the world data list
Pitcairn is not in the world data list
Sint Maarten (Dutch part) is not in the world data list
South America is not in the world data list
South Korea is not in the world data list
South Sudan is not in the world data list
Syria is not in the world data list
Tanzania is not in the world data list
Timor is not in the world data list
Upper middle income is not in the world data list
Vatican is not in the world data list
Vietnam is not in the world data list
Wallis and Futuna is not in the world data list
World is not in the world data list



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 8/45

Just to see the types of names in our World shape file let's loop over and print each item in our "world_data_list".

for name in world_data_list:
    print(name)

⌨ While some of the missing records are continental and other summaries, we have identified some of the
major countries that we need to replace in our world_data in order to make sure we can conduct a merge on our
index field from the world_covid_cases Geodataframe.

world_data.replace('Korea, Republic of', 'S. Korea', inplace = True)
world_data.replace('Iran (Islamic Republic of)', 'Iran', inplace = True)
world_data.replace('Viet Nam', 'Vietnam', inplace = True)
world_data.replace('Micronesia, Federated States of', 'Micronesia (country)', inpla
ce = True)
world_data.replace('Czech Republic', 'Czechia', inplace = True)
world_data.replace('The former Yugoslav Republic of Macedonia', 'North Macedonia', 
inplace = True)
world_data.replace('United Republic of Tanzania', 'Tanzania', inplace = True)
world_data.replace('Democratic Republic of the Congo', 'Democratic Republic of Cong
o', inplace = True)
world_data.replace('Libyan Arab Jamahiriya', 'Libya', inplace = True)

In [ ]: #

⌨ Now we can use the .merge() method to join our tabular World covid cases to our World shapefile.

combined = world_data.merge(world_covid_cases, on = 'NAME')
combined



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 9/45

In [ ]: #

⌨ Then we can plot our total Covid Cases World Wide. You might notice some parameters below that we have
not discussed in class. There is a lot of variables and information about how to plot using the matplotlib library.
Here is some documentation in the GeoPandas documentation plotting with GeoPandas
(https://geopandas.org/docs/user_guide/mapping.html)

f, ax1 = plt.subplots(1, figsize=(20,20))
ax1.set_title("Total Covid Cases WorldWide")
combined.plot(ax=ax1, cmap='plasma', column="TotalCases", legend=True, legend_kwds=
{'orientation':"horizontal"})
plt.axis()

Out[ ]:
NAME geometry TotalCases TotalDeaths

0 Antigua and Barbuda MULTIPOLYGON (((-61.68667 17.02444,
-61.73806 ... 7451.0 135.0

1 Algeria POLYGON ((2.96361 36.80222, 2.98139
36.80694, ... 265186.0 6852.0

2 Azerbaijan MULTIPOLYGON (((45.08332 39.76804,
45.26639 39... 788525.0 9488.0

3 Albania POLYGON ((19.43621 41.02107, 19.45055
41.06000... 272030.0 3478.0

4 Armenia MULTIPOLYGON (((45.57305 40.63249,
45.52888 40... 421008.0 8518.0

... ... ... ... ...

200 Turks and Caicos
Islands

MULTIPOLYGON (((-71.14029 21.43194,
-71.14584 ... 5868.0 36.0

201 Serbia POLYGON ((20.07142 42.56091, 20.10583
42.64278... 1921831.0 15378.0

202 Guernsey POLYGON ((-2.59083 49.42249, -2.59722
49.42249... 0.0 0.0

203 Jersey POLYGON ((-2.01500 49.21416, -2.02111
49.17722... 0.0 0.0

204 Taiwan MULTIPOLYGON (((121.57639 22.00139,
121.57027 ... 20719.0 853.0

205 rows × 4 columns

https://geopandas.org/docs/user_guide/mapping.html
https://geopandas.org/docs/user_guide/mapping.html


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 10/45

In [ ]: #

❔ Can you describe what the "f" and "ax1" represent in the above block of code?

⛬

❔ While renaming some countries resulted in a pretty convincing map, yet there remain some issues resulting
from geopolitical differences. For instance, what's happening with Western Sahara?

⛬

II. Geopandas Geometric Operations
We'll explore geometric operations in Geopandas by looking at some Bay Area counties data. As we've seen
above, GeoPandas can read shapefiles directly. Behind the scenes, this operation is using the GDAL  package
which contains the binaries capable of understanding geospatial data, the fiona  package, which allows Python
to interact nicely with GDAL  libraries, and the shapely package which has functions for operating with feature
classes in a Pythonic way. GeoPandas coordinate reference systems can use the "European Petroleum Survey
Group" (EPSG) and other codes (e.g. ESRI) as shorthand for various standard systems. Complete
documentation is available here GeoPandas (https://geopandas.org/docs/user_guide/data_structures.html)

Out[ ]: Text(0.5, 1.0, 'Total Covid Cases WorldWide')

Out[ ]: <AxesSubplot: title={'center': 'Total Covid Cases WorldWide'}>

Out[ ]: (-197.99999999999997, 198.0, -62.896889999999914, 90.60076200000007)

https://geopandas.org/docs/user_guide/data_structures.html
https://geopandas.org/docs/user_guide/data_structures.html


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 11/45

⌨ Read in the BA_Counties.shp feature class, and then view it

import geopandas as gpd
import pandas as pd
ba_counties = gpd.read_file('geodata/BA_Counties.shp')
ba_counties

In [ ]: #

❔ ⌨ How many features in the dataset?

len(ba_counties)

We may have not used len()  before with dataframes, but it's a base Python function that can
return the length of strings and lists, or with numpy the total size, but with dataframes returns the
number of records (rows) which for spatial data is the number of features. What do you get if you
use .size  with a dataframe?

Out[ ]:
OBJECTID Acres County Shape_Leng Shape_Area geometry

0 1 4.763008e+05 Alameda 351719.536494 1.927521e+09
MULTIPOLYGON

(((6033505.488
2112049.179, 60331...

1 2 4.811194e+05 Contra
Costa 292676.346086 1.947021e+09

MULTIPOLYGON
(((6027405.300

2153185.401, 60272...

2 3 3.360223e+05 Marin 419122.293142 1.359834e+09
MULTIPOLYGON

(((5988028.191
2211673.341, 59879...

3 4 5.054966e+05 Napa 278766.105739 2.045672e+09
POLYGON ((6021779.628

2506831.778,
6021843.051...

4 5 3.021589e+04 San
Francisco 106843.644006 1.222794e+08

MULTIPOLYGON
(((6006624.799

2128525.324, 60061...

5 6 2.902726e+05 San Mateo 306693.656488 1.174692e+09
MULTIPOLYGON

(((6068478.537
2017484.502, 60691...

6 7 8.312778e+05 Santa
Clara 380752.936529 3.364062e+09

POLYGON ((6136976.940
1994399.503,

6137343.878...

7 8 5.437972e+05 Solano 330514.170440 2.200669e+09
MULTIPOLYGON

(((6121744.455
2214795.253, 61216...

8 9 1.015939e+06 Sonoma 400983.408337 4.111360e+09
POLYGON ((5987868.159

2233054.492,
5987850.662...



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 12/45

In [ ]: #

⌨ List the unique geometry types in this geodataframe.

ba_counties.type.unique()

In [ ]: #

❔ Why do you think there are these geometry types?

⛬

⌨ Examine the attributes for the first feature

ba_counties.iloc[0]

In [ ]: #

Projections and coordinate referencing systems in GeoPandas
Geospatial data area by definition always in a map projection and an associated coordinate referencing system
(crs). We can detect the coordinate reference system of a spatial data frame with .crs .

⌨ Use this with world_data  and ba_counties  and check http://epsg.io (http://epsg.io) to look up others
(there are many thousands of these, since projections also have parameters that produce many variants, and
these are needed for optimal display of geospatial data).

Out[ ]: 9

Out[ ]: array(['MultiPolygon', 'Polygon'], dtype=object)

Out[ ]: OBJECTID                                                      1
Acres                                             476300.784182
County                                                  Alameda
Shape_Leng                                        351719.536494
Shape_Area                                        1927520887.16
geometry      (POLYGON ((6033505.487613098 2112049.179188581...
Name: 0, dtype: object

http://epsg.io/
http://epsg.io/


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 13/45

In [ ]: #

⌨ We can reproject our data in GeoPandas. Here we'll reproject our NAD83 data to UTM Zone 10 N, which has
an EPSG code of 32610.

ba_counties_UTM  = ba_counties.to_crs('EPSG:32610')

In [ ]: #

⌨ View the crs after we've assigned the projection

ba_counties_UTM.crs

Out[ ]: <Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

Out[ ]: <Projected CRS: EPSG:2227>
Name: NAD83 / California zone 3 (ftUS)
Axis Info [cartesian]:
- E[east]: Easting (US survey foot)
- N[north]: Northing (US survey foot)
Area of Use:
- undefined
Coordinate Operation:
- name: unnamed
- method: Lambert Conic Conformal (2SP)
Datum: North_American_Datum_1983
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 14/45

In [ ]: #

The Geometry Field and Spatial Abstraction
The key to Geopandas is ability to work with geospatial data is by adding a new data type to the standard
Pandas dataFrame: this is stored in the geometry field. Complete documentation on the geometry object is here:
http://geopandas.org/geometric_manipulations.html (http://geopandas.org/geometric_manipulations.html).

⌨ Let's explore this field. The following code will show the first 5 values in the geometry field: this is actually a
GeoSeries...

ba_counties_UTM['geometry'][0:5]

Note: if you open a shapefile in ArcGIS, you probably won't see a geometry  field. Instead you'll
see a Shape  field, which represents the same thing, but it doesn't display its specific contents in
the attribute table.

In [ ]: #

⌨ We can show just the first value, which will appear as a shape.

ba_counties_UTM['geometry'][0]

Out[ ]: <Projected CRS: EPSG:32610>
Name: WGS 84 / UTM zone 10N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Between 126°W and 120°W, northern hemisphere between equator and 84°
N, onshore and offshore. Canada - British Columbia (BC); Northwest Territorie
s (NWT); Nunavut; Yukon. United States (USA) - Alaska (AK).
- bounds: (-126.0, 0.0, -120.0, 84.0)
Coordinate Operation:
- name: UTM zone 10N
- method: Transverse Mercator
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

Out[ ]: 0    MULTIPOLYGON (((559203.322 4181745.002, 559093...
1    MULTIPOLYGON (((557010.199 4194225.573, 556971...
2    MULTIPOLYGON (((544539.414 4211720.068, 544529...
3    POLYGON ((552408.536 4301893.277, 552428.567 4...
4    MULTIPOLYGON (((550881.251 4186544.834, 550741...
Name: geometry, dtype: geometry

http://geopandas.org/geometric_manipulations.html
http://geopandas.org/geometric_manipulations.html


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 15/45

In [ ]: #

❔ What does the following code produce and why?

for i in range(len(ba_counties_UTM)):
   ba_counties_UTM['geometry'][i]

⛬

Out[ ]:



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 16/45

In [ ]: #



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 17/45

Out[ ]:

Out[ ]:

Out[ ]:



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 18/45

Out[ ]:

Out[ ]:

Out[ ]:



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 19/45

Out[ ]:

Out[ ]:

Out[ ]:



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 20/45

⌨ Extract one feature geometry to a variable and show its type (not the same as dtype).

thePoly = ba_counties_UTM['geometry'][0]
type(thePoly)

In [ ]: #

❔ So what is shapely ? Search online about shapely  and geopandas  to research your answer.

⛬

⌨ Show thePoly and you should see the individual polygon (not surprising based on what we saw before).

thePoly

In [ ]: #

⌨ Look at other geometric properties for thePoly  using the properties .area  and .length  .

What do you think this length represents?

In [ ]: #

Out[ ]: shapely.geometry.multipolygon.MultiPolygon

Out[ ]:

Area (m2): 1927520887
Perimeter (m): 351719



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 21/45

We can also abstract parts of the geometry.

⌨ Assign the result of the property .boundary  to theBoundary , display it and list its geometry type .

In [ ]: #

Spatial Analysis with GeoPandas
We've already started this with spatial abstractions like the boundary, but there are a lot more spatial analysis
methods we can apply that you'll recognize from your experience with GIS.

Centroid
⌨ Create the centroid with the .centroid  property, print it to see its value, and show its type,

In [ ]: #

print(theCentroid)

Out[ ]:

Out[ ]: shapely.geometry.multilinestring.MultiLineString

POINT (598249.2377859637 4167169.885425969)

Out[ ]: shapely.geometry.point.Point



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 22/45

Buffer
⌨ We can also do something you've certainly done before -- create a buffer polygon. Use the .buffer()
method and provide 1000 (1 km) as the sole distance  parameter.

In [ ]: #

Distance Analysis
We can also compute distances fairly easily with GeoPandas objects.

⌨ Here we'll compute the distance (in km) of each feature to the center point of all ( unary_union ) features.

#Compute the center of all features combined
theCenter = ba_counties_UTM.unary_union.centroid
theDistances = ba_counties_UTM.distance(theCenter)/1000

In [ ]: #

⌨ Then get the mean distance using the mean()  method -- note that it's a method not a property.

theDistances.mean()

In [ ]: #

Out[ ]:

Out[ ]: 21.463153699118223



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 23/45

⌨ Then we can derive a histogram of these distances.

theDistances.hist(figsize=(15,3))

In [ ]: #

Here we will buffer the centroid of a feature and then intersect that with the feature.

⌨ We begin by selecting a feature. We'll pick Alameda County...

countyMask = ba_counties_UTM['County'] == 'Alameda'
Alameda = ba_counties_UTM[countyMask]
Alameda

You might have expected to see a map, but what we've just created is a record of the spatial
dataframe, so it shows in as a row. Earlier we just pulled out the geometry.

In [ ]: #

❔ What do you get if you pull out the geometry  field?

feature_geometry = Alameda['geometry']
type(feature_geometry)
features_geometry = ba_counties_UTM['geometry']
type(features_geometry)

⛬ Interpretation:

Out[ ]: <AxesSubplot: >

Out[ ]:
OBJECTID Acres County Shape_Leng Shape_Area geometry

0 1 476300.784182 Alameda 351719.536494 1.927521e+09
MULTIPOLYGON

(((559203.322 4181745.002,
559093...



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 24/45

In [ ]: #

Replacing geometries
We can modify the geometry of out data in various ways.
⌨ Here's a simple example that will replace the shape with a 5000-m buffered centroid.

ba_counties_copy = ba_counties_UTM.copy()
ba_counties_copy['geometry'] = ba_counties_copy['geometry'].centroid.buffer(5000)
ba_counties_copy.plot()

In [ ]: #

Out[ ]: geopandas.geoseries.GeoSeries

Out[ ]: geopandas.geoseries.GeoSeries

Out[ ]: <AxesSubplot: >



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 25/45

III. Making Maps with GeoPandas and Tabular Data
In this section we'll be taking a look at San Francisco's 311 data from November 2020. The file
SF_Nov20_311.csv  should be in your geodata  folder. In particular we're going to make a simple map that

contains all the Parking complaints reported through 311 in November 2020 and then using the contextily
library, we'll be adding a basemap to our map.

⌨ Use pd.read_csv()  to read this file and assign it to a new dataframe sf_311 .



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 26/45

In [ ]: #

⌨ Display all the field names within our dataframe using the .columns  property.

Out[ ]:

CaseID Opened Closed Updated Status Status_Notes Responsible_Ag

0 13138553 11/13/2020
7:21 NaN 11/13/2020

14:09 Open NaN Port Author

1 13119442 11/8/2020
9:40

11/8/2020
9:45

11/8/2020
9:45 Closed

Case Resolved - Police
Officer responded to

re...

Parking Enforc
Dispatch Q

2 13091973 11/1/2020
0:08

11/1/2020
1:29

11/1/2020
1:29 Closed

Case Resolved -
POLICE MATTER.

PLEASE NOTIFY ...
311 Supervisor Q

3 13155970 11/18/2020
6:27

11/18/2020
7:27

11/18/2020
7:27 Closed

Case Resolved -
Officer responded to

request u...

Parking Enforc
Dispatch Q

4 13180413 11/24/2020
14:19

11/24/2020
17:06

11/24/2020
17:06 Closed

Case Resolved -
Officer responded to

request u...

Parking Enforc
Dispatch Q

... ... ... ... ... ... ...

47991 13096891 11/2/2020
11:07

11/4/2020
10:08

11/4/2020
10:08 Closed

Comment Noted - To
view the status,

see\n13097...

47992 13096288 11/2/2020
9:58

11/3/2020
13:28

11/3/2020
13:28 Closed

Case Transferred -
DPH Environmental

Health\n1...

47993 13094573 11/1/2020
19:52

11/2/2020
8:00

11/2/2020
8:00 Closed

Case is a Duplicate -
\n13094578,11/01/2020

0...

47994 13093656 11/1/2020
14:13

11/17/2020
9:20

11/17/2020
9:20 Closed

Cancelled -
\n13041136,10/19/2020

11:25:00 AM...

47995 13092881 11/1/2020
10:22

11/6/2020
7:37

11/6/2020
7:37 Closed

Comment Noted - To
view the status,

see\n11470...

47996 rows × 19 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 27/45

In [ ]: #

⌨ Next, because we might not be too familiar with our input data, we can do a .groupby() operation on
"Request_Type" and sort the results to see the 10 most common request types in our 311 data.

sf_311.groupby('Request_Type').Request_Type.count().sort_values(ascending=False).he
ad(10)

❔ Interpret the various methods we've used in this statement and how they provide the result we're seeking.

⛬

In [ ]: #

⌨ Detect missing coordinates if any of the records are missing either Latitude  or Longitude .

missing_coordinates = sf_311.Latitude.isnull() | sf_311.Longitude.isnull()

In [ ]: #

⌨ How many missing coordinates?

missing_coordinates.sum()

In [ ]: #

Out[ ]: Index(['CaseID', 'Opened', 'Closed', 'Updated', 'Status', 'Status_Notes',
      'Responsible_Agency', 'Category', 'Request_Type', 'Request_Details',
      'Address', 'Street', 'Supervisor_District', 'Neighborhood',
      'Police District', 'Latitude', 'Longitude', 'Point', 'Source'],
     dtype='object')

Out[ ]: Request_Type
Bulky Items                                         10085
General Cleaning                                     7666
request_for_service                                  2180
Encampment Reports                                   1886
Human or Animal Waste                                1855
Other_Illegal_Parking                                1725
Graffiti on Other_enter_additional_details_below     1536
City_garbage_can_overflowing                         1479
Illegal Postings - Affixed_Improperly                1399
Parking_on_Sidewalk                                  1188
Name: Request_Type, dtype: int64

Out[ ]: 46



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 28/45

⌨ Here we can reassign the sf_311 dataframe with just those that have coordinates by selecting with .notna()
for either Latitude, Longitude, or Point (which holds a tuple of latitude and longitude, probably redundant for the
other two fields.)

sf_311 = sf_311[sf_311['Latitude'].notna() & sf_311['Longitude'].notna()]

In [ ]: #

⌨ Use the missing_coordinates method from above to confirm that there are no missing coordinates.

In [ ]: #

⌨ Next, use gpd.readfile() and .plot() to assign a new GeoDataFrame sf_neighborhoods  from
geodata/sf_neighborhoods.shp  and plot it.

In [ ]: #

Out[ ]: 0

Out[ ]: <AxesSubplot: >



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 29/45

⌨ Examine the sf_neighborhoods  GeoDataFrame as a table.

sf_neighborhoods

In [ ]: #

⌨ ❔ What's the crs of sf_neighborhoods ?

⛬

Out[ ]:
link name geometry

0 http://en.wikipedia.org/wiki/Sea_Cliff,_San_Fr... Seacliff POLYGON ((-122.49346
37.78352, -122.49373 37.7...

1 None Lake Street POLYGON ((-122.48715
37.78379, -122.48729 37.7...

2 http://www.nps.gov/prsf/index.htm Presidio
National Park

POLYGON ((-122.47758
37.81099, -122.47712 37.8...

3 None Presidio Terrace POLYGON ((-122.47241
37.78735, -122.47100 37.7...

4 http://www.sfgate.com/neighborhoods/sf/innerri... Inner Richmond POLYGON ((-122.47263
37.78631, -122.46683 37.7...

... ... ... ...

112 http://en.wikipedia.org/wiki/Corona_Heights,_S... Corona Heights POLYGON ((-122.43519
37.76267, -122.43532 37.7...

113 http://en.wikipedia.org/wiki/Haight-Ashbury Ashbury Heights POLYGON ((-122.45196
37.76148, -122.45210 37.7...

114 http://en.wikipedia.org/wiki/Eureka_Valley,_Sa... Eureka Valley POLYGON ((-122.43734
37.76235, -122.43704 37.7...

115 http://en.wikipedia.org/wiki/St._Francis_Wood,... St. Francis
Wood

POLYGON ((-122.47157
37.73471, -122.46831 37.7...

116 http://en.wikipedia.org/wiki/Neighborhoods_in_... Sherwood
Forest

POLYGON ((-122.45890
37.74054, -122.45877 37.7...

117 rows × 3 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 30/45

In [ ]: #

Get the extent
⌨ Use the .total_bounds  property to assign the extent to sf_extent .

In [ ]: #

⌨ What is the data type of the sf_extent?

⛬

⌨ Realizing that the four extent values are ordered this way -- [xmin,y_min,x_max,y_max] -- assign those four
values as variables x_min , etc.

In [ ]: #

⌨ In the code above we created 4 variables that contains the x/y max and min. Next, we can set bounding
extent that is too far outside our sf_neighborhoods data. We'll do this to exclude any 311 calls that are beyond
our sf_neighborhoods extents.

too_far_ns = (sf_311.Latitude < y_min) | (sf_311.Latitude > y_max)
too_far_we = (sf_311.Longitude < x_min) | (sf_311.Longitude > x_max)
outside = too_far_ns | too_far_we

In [ ]: #

⌨ Now, we can see how many records are beyond our extent.

outside.sum()

Out[ ]: <Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

Out[ ]: array([-122.51489723,   37.70808921, -122.35698199,   37.83239598])



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 31/45

In [ ]: #

⌨ Let's filter our data, below is a new operation that you might not have seen in class yet. The ~  in the code
below is a boolean operator in Pandas that mean "not". So, in this code we are saying return the values from the
sf_311 dataframe that are not outside our extent.

sf_311 = sf_311[~outside]

In [ ]: #

Once we've filtered out our data, we can now convert our Pandas dataframe into a GeoPandas Geodataframe.
Here notice how we pass the .points_from_xy() method into the geometry option for loading into a Geopandas
Geodataframe.

sf_311 = gpd.GeoDataFrame(sf_311, geometry=gpd.points_from_xy(sf_311.Longitude, 
sf_311.Latitude))
sf_311

In [ ]: #

Before we plot our points, we'll want to add a basemap, and for that we need to use the contextily  app. This
needs some introduction...

Basemaps from contextily
The contextily  app provides basemaps -- context. This is something we take for granted when using ArcGIS
Pro, but is a really useful capability, and the sheer number of basemaps available in ArcGIS is a big cartographic
advantage. Part of what you're paying for with ArcGIS is access to all these basemap tile services. But there's an
increasing number of open tile services, such as the well-known OpenStreetMap , which by its very name tells
you it's open data.

However, one common source of error with basemaps is when a service provider goes off-line, or starts charging
for their tiles, and I've had this happen with contextily  when its default basemap provider Stamen started
charging. So we'll explicitly tell it to access OpenStreetMap .

⌨ Before we plot our points we'll want to import the contextily python library as "cx", so we can add a basemap
to our plot.

import contextily as cx

In [ ]: #

Out[ ]: 8



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 32/45

⌨ Since the default projection is 4326 (GCS WGS84), we don't need to use .set_crs to set that, but we'd like to
put it in 3857 ("Web Mercator") using .to_crs() to make sure the data will draw on top of our base map tiles from
contextily.

sf_311 = sf_311.to_crs("EPSG:3857")

Note that we reassigned sf_311 to be in this new crs. If we needed to work with it further in GCS,
we'd need to run all of our code again to build it. We might have instead assigned it to something
like sf_311_webm  to separate it, but there's no particular advantage.

In [ ]: #

⌨ To confirm this worked, get the crs property of sf_311  with:

sf_311.crs

In [ ]: #

⌨ Set the basemap and basemap extent from contextily. Note that we'll specify the basemap tile provider with
source=ctx.providers.OpenStreetMap.Mapnik . To see other services that may be available, see

https://contextily.readthedocs.io/en/latest/providers_deepdive.html
(https://contextily.readthedocs.io/en/latest/providers_deepdive.html).

basemap, basemap_extent = cx.bounds2img(*sf_311.total_bounds, zoom=15, ll=False,
                                       source=cx.providers.OpenStreetMap.Mapnik)

Note that we needed to use .total_bounds again here since these need to be in web mercator.

In [ ]:

Out[ ]: <Projected CRS: EPSG:3857>
Name: WGS 84 / Pseudo-Mercator
Axis Info [cartesian]:
- X[east]: Easting (metre)
- Y[north]: Northing (metre)
Area of Use:
- name: World between 85.06°S and 85.06°N.
- bounds: (-180.0, -85.06, 180.0, 85.06)
Coordinate Operation:
- name: Popular Visualisation Pseudo-Mercator
- method: Popular Visualisation Pseudo Mercator
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

https://contextily.readthedocs.io/en/latest/providers_deepdive.html
https://contextily.readthedocs.io/en/latest/providers_deepdive.html


1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 33/45

⌨ Plot all the 311 calls with a basemap set.

f, ax1 = plt.subplots(1, figsize=(20,20))
ax1.set_title("All 311 Calls November 2020 San Francisco")
plt.imshow(basemap, extent=basemap_extent)
sf_311.plot(ax=plt.gca(), marker='.', markersize=2, alpha=.75)
ax1.set_axis_off()
plt.axis()



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 34/45

In [ ]: #

❔ In the above block of code, what does the "alpha" parameter control?

⛬

Out[ ]: Text(0.5, 1.0, 'All 311 Calls November 2020 San Francisco')

Out[ ]: <matplotlib.image.AxesImage at 0x1dcaada2190>

Out[ ]: <AxesSubplot: title={'center': 'All 311 Calls November 2020 San Francisco'}>

Out[ ]: (-13638811.83098057, -13621689.93664469, 4537301.999008061, 4555646.88579650
4)



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 35/45

⌨ Before we can decide how to best filter our data down, let's take a look at all the unique values in the
"Category" field.

sf_311.Category.unique()

In [ ]: #

⌨ We can create a new geodataframe that only contains the Category 'Parking Enforcement' and call it
"parking_issues".

parking_issues = sf_311.query("Category == 'Parking Enforcement'")
parking_issues

Out[ ]: array(['Rec and Park Requests', 'Parking Enforcement', 'Noise Report',
      'Street and Sidewalk Cleaning', 'Sewer Issues', 'Street Defects',
      'Damaged Property', 'Sidewalk or Curb', 'Streetlights',
      'General Request - PUC', 'Muni Employee Feedback',
      'Blocked Street or SideWalk', 'General Request - PUBLIC WORKS',
      'Tree Maintenance', 'SFHA Requests',
      'General Request - ANIMAL CARE CONTROL', 'Sign Repair',
      'Encampments', 'Residential Building Request',
      'Litter Receptacles', 'Graffiti', 'General Request - MTA',
      'General Request - DPH', 'General Request - SFPD',
      'Illegal Postings', 'General Request - BUILDING INSPECTION',
      'General Request -', 'General Request - ASSESSOR RECORDER',
      'General Request - CHILDREN YOUTH FAMILIES',
      'Muni Service Feedback', 'Homeless Concerns',
      'DPW Volunteer Programs', 'Catch Basin Maintenance',
      'General Request - PORT AUTHORITY', '311 External Request',
      'Temporary Sign Request',
      'General Request - ENTERTAINMENT COMMISSION',
      'General Request - RENT BOARD',
      'General Request - BOARD OF SUPERVISORS',
      'General Request - CITYADMINISTRATOR GSA',
      'General Request - PLANNING', 'General Request - FIRE DEPARTMENT',
      'General Request - MOD', 'General Request - COUNTY CLERK',
      'General Request - ENVIRONMENT',
      'General Request - HUMAN SERVICES AGENCY',
      'General Request - DISTRICT ATTORNEY', 'General Request - RPD',
      'General Request - ELECTIONS', 'General Request - HSH',
      'General Request - SHORT TERM RENTALS', 'General Request - DTIS',
      'General Request - MOH', 'General Request - MOCD',
      'General Request - 311CUSTOMERSERVICECENTER',
      'General Request - ECONOMICS AND WORKFORCE DEVELOPMENT',
      'Abandoned Vehicle'], dtype=object)



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 36/45

In [ ]: #



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 37/45

Out[ ]: <bound method NDFrame.head of          CaseID            Opened            Cl
osed           Updated  Status  \
1      13119442    11/8/2020 9:40    11/8/2020 9:45    11/8/2020 9:45  Closed 
3      13155970   11/18/2020 6:27   11/18/2020 7:27   11/18/2020 7:27  Closed 
4      13180413  11/24/2020 14:19  11/24/2020 17:06  11/24/2020 17:06  Closed 
5      13119107    11/8/2020 8:01    11/8/2020 8:22    11/8/2020 8:22  Closed 
6      13119507   11/8/2020 10:04   11/8/2020 10:12   11/8/2020 10:12  Closed 
...         ...               ...               ...               ...     ... 
47687  13182171   11/25/2020 6:45   11/25/2020 6:50   11/25/2020 6:50  Closed 
47688  13182140   11/25/2020 6:21   11/25/2020 7:17   11/25/2020 7:17  Closed 
47689  13106664   11/4/2020 13:44   11/4/2020 14:03   11/4/2020 14:03  Closed 
47737  13134578   11/12/2020 8:38   11/12/2020 8:44   11/12/2020 8:44  Closed 
47924  13097975   11/2/2020 13:37   11/2/2020 14:23   11/2/2020 14:23  Closed 

                                           Status_Notes  \
1      Case Resolved - Police Officer responded to re...   
3      Case Resolved - Officer responded to request u...   
4      Case Resolved - Officer responded to request u...   
5      Case Resolved - Officer responded to request u...   
6      Case Resolved - Police Officer responded to re...   
...                                                  ...   
47687  Case is a Duplicate - This issue has already b...   
47688  Case Resolved - Officer responded to request u...   
47689  Case Resolved - Officer responded to request u...   
47737  Case Resolved - Police Officer responded to re...   
47924  Case Resolved - Police Officer responded to re...   

                      Responsible_Agency             Category  \
1      Parking Enforcement Dispatch Queue  Parking Enforcement   
3      Parking Enforcement Dispatch Queue  Parking Enforcement   
4      Parking Enforcement Dispatch Queue  Parking Enforcement   
5      Parking Enforcement Dispatch Queue  Parking Enforcement   
6      Parking Enforcement Dispatch Queue  Parking Enforcement   
...                                   ...                  ...   
47687  Parking Enforcement Dispatch Queue  Parking Enforcement   
47688  Parking Enforcement Dispatch Queue  Parking Enforcement   
47689  Parking Enforcement Dispatch Queue  Parking Enforcement   
47737  Parking Enforcement Dispatch Queue  Parking Enforcement   
47924  Parking Enforcement Dispatch Queue  Parking Enforcement   

               Request_Type                       Request_Details  \
1      Other_Illegal_Parking                   Parking Enforcement   
3      Other_Illegal_Parking             Blue - Chrysler - 5lrx746   
4      Other_Illegal_Parking                Blue - Honda - 8duj830   
5      Other_Illegal_Parking                Blue - Honda - Aw70c09   
6      Other_Illegal_Parking                Blue - Honda - Aw70c09   
...                      ...                                   ...   
47687    Parking_on_Sidewalk  silver - cadillac escalade - 7wxn339   
47688    Parking_on_Sidewalk  silver - cadillac escalade - 7wxn339   
47689    Parking_on_Sidewalk  silver - cadillac escalade - 7wxn339   
47737  Other_Illegal_Parking              White - Chevy van - None   
47924  Other_Illegal_Parking           Blue - Ford suburban - Aksj   

                                      Address     Street  \
1        57 INNES CT, SAN FRANCISCO, CA, 94124   INNES CT   
3        51 INNES CT, SAN FRANCISCO, CA, 94124   INNES CT   
4        51 INNES CT, SAN FRANCISCO, CA, 94124   INNES CT   



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 38/45

5        51 INNES CT, SAN FRANCISCO, CA, 94124   INNES CT   
6        51 INNES CT, SAN FRANCISCO, CA, 94124   INNES CT   
...                                        ...        ...   
47687  1380 LA PLAYA, SAN FRANCISCO, CA, 94122   LA PLAYA   
47688  1380 LA PLAYA, SAN FRANCISCO, CA, 94122   LA PLAYA   
47689  1380 LA PLAYA, SAN FRANCISCO, CA, 94122   LA PLAYA   
47737   Intersection of 48TH AVE and FULTON ST   48TH AVE   
47924  640 GREAT HWY, SAN FRANCISCO, CA, 94121  GREAT HWY   

      Supervisor_District      Neighborhood Police District   Latitude  \
1                     10.0     Hunters Point         BAYVIEW  37.727079   
3                     10.0     Hunters Point         BAYVIEW  37.727363   
4                     10.0     Hunters Point         BAYVIEW  37.727356   
5                     10.0     Hunters Point         BAYVIEW  37.727256   
6                     10.0     Hunters Point         BAYVIEW  37.727338   
...                    ...               ...             ...        ...   
47687                  4.0      Outer Sunset         TARAVAL  37.760715   
47688                  4.0      Outer Sunset         TARAVAL  37.760715   
47689                  4.0      Outer Sunset         TARAVAL  37.760715   
47737                  1.0  Golden Gate Park        RICHMOND  37.771371   
47924                  1.0     Sutro Heights        RICHMOND  37.775573   

       Longitude                         Point          Source  \
1     -122.367097  (37.72707865, -122.36709653)  Mobile/Open311   
3     -122.367930  (37.72736328, -122.36792978)  Mobile/Open311   
4     -122.367940  (37.72735638, -122.36793984)  Mobile/Open311   
5     -122.367988  (37.72725562, -122.36798812)  Mobile/Open311   
6     -122.367992  (37.72733809, -122.36799181)  Mobile/Open311   
...           ...                           ...             ...   
47687 -122.509000    (37.7607147, -122.5090004)             Web   
47688 -122.509000    (37.7607147, -122.5090004)             Web   
47689 -122.509000    (37.7607147, -122.5090004)             Web   
47737 -122.509327  (37.77137094, -122.50932645)  Mobile/Open311   
47924 -122.511296  (37.77557256, -122.51129619)  Mobile/Open311   

                               geometry  
1      POINT (-13621842.872 4540942.599)  
3      POINT (-13621935.635 4540982.659)  
4      POINT (-13621936.748 4540981.687)  
5      POINT (-13621942.125 4540967.506)  
6      POINT (-13621942.537 4540979.113)  
...                                  ...  
47687  POINT (-13637639.542 4545677.756)  
47688  POINT (-13637639.542 4545677.756)  
47689  POINT (-13637639.542 4545677.756)  
47737  POINT (-13637675.843 4547178.350)  
47924  POINT (-13637895.109 4547770.075)  

[5054 rows x 20 columns]>



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 39/45

⌨ Let's plot the parking issues only and then set the extent of our map to the total extent of the parking issues
geodataframe.

f, ax1 = plt.subplots(1, figsize=(20,20))
ax1.set_title("Parking Related 311 Calls November 2020 San Francisco")
plt.imshow(basemap, extent=basemap_extent)
parking_issues.plot(ax=plt.gca(), marker='.', markersize=10, alpha=1)
ax1.set_axis_off()
plt.axis()



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 40/45

In [ ]: #

Next, we'll do a spatial join between our 311 parking issues and San Francisco neighborhoods. But before we
can run that opertaion, let's set the projection of our sf_neighborhoods to match our 311 data.

sf_neighborhoods = sf_neighborhoods.to_crs('EPSG:3857')

Out[ ]: Text(0.5, 1.0, 'Parking Related 311 Calls November 2020 San Francisco')

Out[ ]: <matplotlib.image.AxesImage at 0x170591698c8>

Out[ ]: <AxesSubplot:title={'center':'Parking Related 311 Calls November 2020 San Fra
ncisco'}>

Out[ ]: (-13638811.83098057, -13621689.93664469, 4537301.999008061, 4555646.88579650
4)



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 41/45

In [ ]: #

Here we can calculate the count of parking issues by neighborhood and then add a field to our neighborhoods
data and call it "parking_incidents". Then examine the sf_neighborhoods geodataframe.

hood_counts = gpd.sjoin(sf_neighborhoods, parking_issues, how='left',op='contains')\
                       .groupby('name').index_right.count()
sf_neighborhoods['parking_incidents'] = hood_counts.values
sf_neighborhoods



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 42/45

In [ ]: #

Out[ ]:
link name geometry parking_incidents

0 http://en.wikipedia.org/wiki/Sea_Cliff,_San_Fr... Seacliff

POLYGON
((-13635909.066

4548889.167,
-13635939...

20

1 None Lake
Street

POLYGON
((-13635207.246

4548926.811,
-13635222...

14

2 http://www.nps.gov/prsf/index.htm
Presidio
National

Park

POLYGON
((-13634141.858

4552759.779,
-13634091...

15

3 None Presidio
Terrace

POLYGON
((-13633566.376

4549428.413,
-13633409...

1

4 http://www.sfgate.com/neighborhoods/sf/innerri... Inner
Richmond

POLYGON
((-13633590.339

4549283.086,
-13632945...

13

... ... ... ... ...

112 http://en.wikipedia.org/wiki/Corona_Heights,_S... Corona
Heights

POLYGON
((-13629422.779

4545953.181,
-13629437...

5

113 http://en.wikipedia.org/wiki/Haight-Ashbury Ashbury
Heights

POLYGON
((-13631289.585

4545785.263,
-13631305...

91

114 http://en.wikipedia.org/wiki/Eureka_Valley,_Sa... Eureka
Valley

POLYGON
((-13629662.606

4545908.690,
-13629628...

0

115 http://en.wikipedia.org/wiki/St._Francis_Wood,... St. Francis
Wood

POLYGON
((-13633472.736

4542016.274,
-13633109...

9

116 http://en.wikipedia.org/wiki/Neighborhoods_in_... Sherwood
Forest

POLYGON
((-13632062.910

4542836.706,
-13632047...

0

117 rows × 4 columns



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 43/45

Here were can plot all our 311 parking issues by neighborhood.

f, ax1 = plt.subplots(1, figsize=(15,15))
ax1.set_title("Parking Related 311 Calls By Neighborhood")
plt.imshow(basemap, extent=basemap_extent)
sf_neighborhoods.plot('parking_incidents', ax=plt.gca(), 
                   cmap='Wistia', alpha=.5, legend=True, legend_kwds=
{'orientation':"horizontal"})
ax1.set_axis_off()
plt.axis(parking_issues.total_bounds[[0,2,1,3]])



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 44/45

In [ ]: #

Turn in your iPython notebook once you have completed this exercise.

Out[ ]: Text(0.5, 1.0, 'Parking Related 311 Calls By Neighborhood')

Out[ ]: <matplotlib.image.AxesImage at 0x17060258188>

Out[ ]: <AxesSubplot:title={'center':'Parking Related 311 Calls By Neighborhood'}>

Out[ ]: (-13637895.109407913,
-13621842.872231368,
4538284.832547026,
4552426.083463726)



1/27/24, 2:49 PM Ex06_GeoPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex06_GeoPandas_results.html 45/45

➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

☑ Code to just run, typically boilerplate.

⌨ Coding you need to write, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Prompt for an interpretation or answering the question.



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 1/37

Introduction to arcpy
In this notebook, we'll start to explore using ArcGIS via the arcpy  module, which will provide us access to all of
the geoprocessing capabilities of ArcGIS. We'll look at:

Getting access to arcpy and some key environments
Where's my data? Using env  and os  to help
Using the os  module to work with multiple workspaces

Creating lists of arcpy objects
List of FeatureClasses or a list of Rasters
Multiple lists within a workspace
List of fields
List of workspaces

Using geoprocessing tools
Toolbox shortcuts
Getting help directly from the code cell
Spatial Analyst tools & map algebra
Processing as a numpy array

Using Describe & Exists for geoprocessing
Describe

Using Describe to get extent
Using the extents to trim a raster
Using Describe with imagery (multiple bands)
Other Describe objects

Exists
Detect if a dataset exists
Delete before creating a new dataset
Detect if a field exists

Create a smaller workspace using Exists and Describe in a loop
Convert geodatabase feature classes to shapefiles
Feature to raster

The next notebook will then get into

Debugging and messaging
Data management
Cursors
Using geopandas together with arcpy
Using pandas with arcpy

This exercise can either be run within ArcGIS in a notebook window (where outputs will go to maps) or from an
IDE running Jupyter notebooks outside (I recommend VS-code), as long as you're continuing to use Python
kernel cloned from the ArcGIS Pro installation.

In [ ]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 2/37

Getting access to arcpy  and setting some key environments
The arcpy  module gives Python access to ArcGIS and geoprocessing. Some of these are geoprocessor-
specific things, others are the 400+ GIS tools (like buffer, clip, etc.) that you normally use in the ArcToolbox.

⌨ Importing arcpy  is always going to be required, and is such an essential requirement that this step has
already been done for you in the notebook environment provided by ArcGIS Pro. If you're working in ArcGIS Pro,
it doesn't hurt to include it anyway just so your notebook will work in either place.

import arcpy

In [ ]:

Where's my data?: Using env  and os  to help
We'll start right at the beginning to take control of where our data is located on my computer/network. This is one
of the big three sources of problems in GIS (the other two being Where's my data on the planet (coordinate
systems) and typos). We'll use environment settings and the os  module to help.

⌨ First we'll create a shortcut to the environment setting object arcpy.env  by simply shortening that to env ,
by either:

from arcpy import env

or

env = arcpy.env

In [ ]: #

⌨ As you know by now with working with ArcGIS, there are many environment settings, and we'll explore others
along the way. But one essential environment setting provides access to your data, which needs the location of
the workspace.

print(env.workspace)

In [ ]: #

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\arcpy.gdb



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 3/37

If you're running this from the Notebook interface in ArcGIS Pro, you're going to see the workspace associated
with the ArcGIS Pro project, probably a geodatabase. However, if you are running this in an IDE like VS-code,
you probably see None  displayed. We will want to be able to work from either location, so we're going to need
to pay attention to how we store our data, which should also use relative paths, and work with the
env.workspace  setting. The os  module will help for that...

Using the os  module to work with multiple workspaces
To access some data while avoiding absolute paths, we'll need to use the very useful os  module we looked at
earlier. We have some geodatabases residing in the project folder that can be accessed by using a relative path
to get there by going up one level to the project folder and then down into the geodatabase or other workspace
folder.

project folder

hmb.gdb
city
elev
geology
...

pen.gdb
cities
faultcov_arc
geol
landusePen
water

other geodatabases / other data folders
various notebook .ipynb files, like this one
...

If you've set things up right, the .ipynb  files should be in the main project folder for an ArcGIS project. In my
case, this folder is Ex07_08_arcpy  and the default workspace is arcpy.gdb , but yours may differ. It doesn't
really matter what the project folder is named or what its path is if we work with relative paths. But you should
have copied various geodatabases such as hmb.gdb , pen.gdb  and marbles.gdb , and since they should be
at the same level, we can navigate to them by going up to the project folder and then down into a parallel
geodatabase.

We're going to need to have the path to the project folder to get our code working without a lot of manual editing.
One approach that would work if you are working in ArcGIS is to use os.path.dirname  with the current
workspace to provide the folder that holds the geodatabase, and so that would be the project folder:

import os
proj = os.path.dirname(env.workspace)

However this isn't going to work for code run from Notebooks outside ArcGIS, so we need a method that works in
either location.

⌨ So instead we'll use another os  method: os.getcwd()  which returns the path to the folder we started in,
either in the IDE or to open the .aprx (but ).



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 4/37

proj = os.getcwd()
proj

This mostly doesn't work if you're using ArcGIS Pro from the start menu, so I've learned to
always start Pro by opening an existing project by opening it from the .aprx in a Windows folder.
The exception is if you're creating a new project in Pro; this will generally provide the path you'd
expect.

In [ ]: #

Before continuing, make sure that this shows the folder where this notebook is stored, which
should be where your geodatabases and other data are located, as an absolute path. Also, make
sure you understand where your files and data are stored (including their absolute paths) and
clearly understand how relative paths help you with this.

You'll also want to understand the various path delimiters like / , \  and \\ : remember that \
is an escape character, thus the need for using \\  to provide the \  that Windows tends to use.

We're going to want to deal with multiple workspaces, so we will need to learn some methods. Basically, the two
options are:

1. Set the workspace with env.workspace ; for instance env.workspace = proj + "\pen.gdb"
2. Use with  to access the workspace just within a code block

I'm increasingly using the with  method, since once you get used to it, it can simplify your code and help you
avoid making mistakes when it's set wrong. In general, environment settings can create problems (it's almost one
of the "Big Three" but that would make it the "Big Four"), so we should look at the with  method right away.

We'll start with a common need: to access lists of data in folders, one of the most important methods in GIS
programming, since GIS is so data-centric.

Out[ ]: 'C:\\Users\\900008452\\Box\\course\\625\\exer\\Ex07_08_arcpy'



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 5/37

Creating lists of arcpy objects
There is a set of arcpy  methods that create lists of arcpy  objects, like feature classes. Each of the following
returns a list that you can process.

ListFeatureClasses
ListRasters
ListFiles
ListWorkspaces
ListFields
ListTables
ListDatasets

Navigating through lists like these is the first types of operations where we can see Python coding helping us do
our work, in this case for managing our data, letting a script perform tedious repeated operations.

List of feature classes or a list of rasters
⌨ If we changed the workspace to one with feature classes, we can get a list displayed. Now that we're in the
pen.gdb , we can see what feature classes are in it with:

arcpy.ListFeatureClasses()

You should know by now to pay attention to capitalization. Everything but Windows filenames are case-sensitive.
Typically arcpy  methods including geoprocessing functions will use "Camel case" where words in the middle of
a method name (like Feature  and Classes ) are capitalized so the entire method name has humps like a
camel: ListFeatureClasses . (Sometimes the camel-case analogy is taken even further so you might have a
name looking like myCamelCase  with no hump at the start, but that's not the case with arcpy methods.)

We could change the workspace, we'll use the with  structure:

with arcpy.EnvManager(workspace='pen.gdb'):
   arcpy.ListFeatureClasses()

In [ ]: #



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 6/37

Assuming you've set up your folders right, and the "pen.gdb"  folder is in the folder where your
notebook .ipynb  file is located, the above should display the list of Now that we have a list, we
can loop through it to perform some operation on it, probably with the same with  structure, but
that depends on what you're doing.

⌨ But we haven't looked at geoprocessing tools yet, so we'll just list the name and length (of the name), in a
for  loop structure; later we'll use a loop structure run geoprocessing tools on each feature class (or a selection)

in a given workspace:

with arcpy.EnvManager(workspace='pen.gdb'):
   for f in arcpy.ListFeatureClasses():
      print(f"name: {f} length: {len(f)}")

In [ ]: #

⌨ But we can use ListFeatureClasses  to select those that are a particular type of geometry, like point, line
or polygon:

with arcpy.EnvManager(workspace='pen.gdb'):
   for dtype in ["point", "line", "polygon"]:
       print(dtype)
       for f in arcpy.ListFeatureClasses(feature_type=dtype):
           print(f"name: {f}")

In [ ]: #

name: cities length: 6
name: faultcov_arc length: 12
name: geol length: 4
name: water length: 5
name: landusePen length: 10
name: urban length: 5

point
line
name: faultcov_arc
polygon
name: cities
name: geol
name: water
name: landusePen
name: urban



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 7/37

⌨ Now let's look at the other method -- actually changing the workspace -- to "hmb.gdb" with env.workspace 
= "hmb.gdb"  and then try the same code as above to see those feature classes. We'll reset the workspace
back to the original at the end.

env.workspace = "hmb.gdb"
for dtype in ["point", "line", "polygon"]:
   print(dtype)
   for f in arcpy.ListFeatureClasses(feature_type=dtype):
       print(f"name: {f}")
env.workspace = proj

In [ ]: #

Sometimes you'll find that you want to actually change the workspace, for instance when you're
doing a lot of steps in that workspace. It all depends on code readability, which is generally
helped by having less code to look at. You'll need to decide which works best for your situation,
but we'll mostly make use of the with  structure.

⌨ Now use ListRasters  to see the list of rasters. In this case, we'll do this all on one line, but we'll start by
inventing a method ENV  to access the arcpy.EnvManager  method; we can keep using that ENV  shortcut
later to shorten our code.

ENV = arcpy.EnvManager
with ENV(workspace="hmb.gdb"): arcpy.ListRasters()

In [ ]: #

point
name: pourpoint
name: landing
line
name: streams
name: faults
name: roads
polygon
name: areaclip
name: publands
name: geolstr200
name: geol
name: stbuff200



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 8/37

From here on, you'll need to remember how to handle the workspace setting, either by changing
and resetting it, or using with  structures, which I recommend. I'll just provide you with any new
code you'll need.

Selecting a subset

⌨ We can select a subset based on the name, to display all of those starting with a e .

arcpy.ListRasters("e*")

Later we'll look at other properties of data sets with the .Describe  method that might allow us to just look at
features of a given property.

In [ ]: #

Multiple lists within a workspace
We'll do several things within the with  structure to demonstrate how several operations can happen, and also
see the effect of the with  structure. I'll give you all of the code here, though it assumes you've previously
defined proj , env , and ENV . ⌨

with ENV(workspace = proj + "\hmb.gdb"):
   print("Workspace:")
   print(env.workspace)
   print("\nRasters:")
   print(arcpy.ListRasters())
   print("\nElevation rasters:")
   print(arcpy.ListRasters("elev*"))
   print("\nFeatureClasses:")
   print(arcpy.ListFeatureClasses())
print("\nWorkspace outside the with structure:")
print(env.workspace)



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 9/37

In [ ]: #

List of fields
⌨ The following code creates a list of fields from a data table. Look up ListFields in the help system so you can
understand why, while it creates no error, printing the field object might not be that useful. Consider what the list
is composed of, in contrast to what we found for feature classes and rasters.

with ENV(workspace = proj + "\pen.gdb"):
flds = arcpy.ListFields("geol")
for fld in flds:
   print(fld)

Workspace:
C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\hmb.gdb

Rasters:
['watergrd', 'geology', 'landuse', 'pub', 'newdev', 'city', 'elev', 'elev30', 
'numpyarraytoraster_f258ed9f_eec4_429b_8182_dbd92283d1c0_284017208', 'numpyar
raytoraster_dbbe317f_ddb6_440b_8a5e_36af55bdad7b_284017208', 'numpyarraytoras
ter_13b48e1f_9a2f_4694_b3b6_e22866798da1_2453623504', 'numpyarraytoraster_95f
a8d4c_0930_4ab2_a851_e38fbd3359cf_2453623504', 'numpyarraytoraster_445f664f_3
8d8_4a15_be0b_f770a0be3df1_401611712', 'numpyarraytoraster_fc5bc198_377a_4502
_ae67_77a6c4662b91_401611712', 'numpyarraytoraster_249bae79_4b16_4f0b_b510_93
f6befada75_2888410860', 'numpyarraytoraster_2d8b9707_cc96_47d1_92ad_c7a458a74
fee_2888410860', 'numpyarraytoraster_83003b86_b865_4c3b_a796_98bd8e4c52b3_288
8410860', 'numpyarraytoraster_0270248f_2469_4a08_b20a_0d192898984f_247041092
4', 'numpyarraytoraster_8cb26adc_892d_437c_a498_b9f3ef151698_2470410924', 'nu
mpyarraytoraster_d5ff6afb_d750_428f_bb6e_a6ad6c302c54_2470410924', 'steepurba
n', 'numpyarraytoraster_29fe2ea7_0b00_4e3f_a528_bcae4b549928_2385214608', 'hi
ghElev_np', 'numpyarraytoraster_3513d5c7_61af_488f_ba7d_c431c1bf698b_23852146
08', 'trimmed_elev']

Elevation rasters:
['elev', 'elev30']

FeatureClasses:
['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'stbuff200']

Workspace outside the with structure:
C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 10/37

In [ ]: #

Now we'll try to fix it:

Fields are complex objects, not simple strings. Since ListFields creates a list of objects that are
not easy to print, like the text strings returned by all of the other lists, this doesn't create an error,
and similarly can't be displayed interactively like the ones above. Also note that this complex
object is assigned to the variable fld.

⌨ Fix the last line by adding the property .name  to the fld object and try it again. Then replace the print
statement with: print("{} is type {} with length {}".format(fld.name, fld.type, fld.length))

In [ ]: #

Alternative method to get a list of fields, using list comprehension, the syntax:

newlist = [ expression for item in iterable if condition == True]

So for our example, we don't need an if condition but we can do it this way:

with ENV(workspace = proj + "\pen.gdb"):
   fldnames = [f.name for f in arcpy.ListFields("geol")]
   fldnames

In [ ]: #

<geoprocessing describe field object object at 0x0000019A2E587EB0>
<geoprocessing describe field object object at 0x0000019A2E587E30>
<geoprocessing describe field object object at 0x0000019A2E587F50>
<geoprocessing describe field object object at 0x0000019A2E587E50>
<geoprocessing describe field object object at 0x0000019A2E587F70>
<geoprocessing describe field object object at 0x0000019A2E587F10>
<geoprocessing describe field object object at 0x0000019A2E587EF0>
<geoprocessing describe field object object at 0x0000019A2E587ED0>
<geoprocessing describe field object object at 0x0000019A2E587E90>

OBJECTID is type OID with length 4
Shape is type Geometry with length 0
AREA is type Double with length 8
PERIMETER is type Double with length 8
GEOLOGY_ is type Double with length 8
GEOLOGY_ID is type Double with length 8
TYPE_ID is type Integer with length 4
Shape_Length is type Double with length 8
Shape_Area is type Double with length 8



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 11/37

List of workspaces
⌨ Our project folder has multiple workspaces. Let's use .ListWorkspaces to display a list, but let's do more than
that and navigate through all of them and list each feature class of a given data type and each raster. We'll limit
the type of workspace to "FileGDB".

for ws in arcpy.ListWorkspaces("*","FileGDB"):
   print(ws)
   with ENV(workspace = ws):
       if arcpy.ListFeatureClasses():
           print("There are {} FeatureClasses:".format(len(arcpy.ListFeatureClasse
s())))
           for dtype in ["point", "line", "polygon"]:
               fs = arcpy.ListFeatureClasses(feature_type=dtype)
               if fs: 
                   print("\t{}".format(dtype))
               for f in fs:
                   print("\t\t{}".format(f))
       rass = arcpy.ListRasters()
       if rass:
           print("There are {} Rasters:".format(len(rass)))
           for ras in rass:
               print("\t{}".format(ras))



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 12/37

In [ ]: #



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 13/37

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\arcpy.gdb
There are 1 FeatureClasses:

point
samplePts_MeanCenter

There are 5 Rasters:
Extract_newd1
Extract_pub1
numpyarraytoraster_c6525966_f1c5_431b_b716_12ff456bdbc6_1806419640
numpyarraytoraster_254a82f0_c9f2_4f87_ab4b_2f25d21acad4_1787618684
numpyarraytoraster_e0f844ec_c5ee_44b1_af76_37c43839e3a8_1787618684

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\bozo.gdb
C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\hmb.gdb
There are 10 FeatureClasses:

point
pourpoint
landing

line
streams
faults
roads

polygon
areaclip
publands
geolstr200
geol
stbuff200

There are 25 Rasters:
watergrd
geology
landuse
pub
newdev
city
elev
elev30
numpyarraytoraster_f258ed9f_eec4_429b_8182_dbd92283d1c0_284017208
numpyarraytoraster_dbbe317f_ddb6_440b_8a5e_36af55bdad7b_284017208
numpyarraytoraster_13b48e1f_9a2f_4694_b3b6_e22866798da1_2453623504
numpyarraytoraster_95fa8d4c_0930_4ab2_a851_e38fbd3359cf_2453623504
numpyarraytoraster_445f664f_38d8_4a15_be0b_f770a0be3df1_401611712
numpyarraytoraster_fc5bc198_377a_4502_ae67_77a6c4662b91_401611712
numpyarraytoraster_249bae79_4b16_4f0b_b510_93f6befada75_2888410860
numpyarraytoraster_2d8b9707_cc96_47d1_92ad_c7a458a74fee_2888410860
numpyarraytoraster_83003b86_b865_4c3b_a796_98bd8e4c52b3_2888410860
numpyarraytoraster_0270248f_2469_4a08_b20a_0d192898984f_2470410924
numpyarraytoraster_8cb26adc_892d_437c_a498_b9f3ef151698_2470410924
numpyarraytoraster_d5ff6afb_d750_428f_bb6e_a6ad6c302c54_2470410924
steepurban
numpyarraytoraster_29fe2ea7_0b00_4e3f_a528_bcae4b549928_2385214608
highElev_np
numpyarraytoraster_3513d5c7_61af_488f_ba7d_c431c1bf698b_2385214608
trimmed_elev

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\HMBcity.gdb
There are 2 Rasters:

elev
elev30

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\marbles.gdb



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 14/37

There are 11 FeatureClasses:
point

co2july95
samples
marblePts

line
streams
trails
contours10m
cont

polygon
geology
veg
water
watrshed

There are 3 Rasters:
elev
elev10
geolgrd

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\pen.gdb
There are 6 FeatureClasses:

line
faultcov_arc

polygon
cities
geol
water
landusePen
urban

There are 1 Rasters:
landusePenras

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\SF.gdb
There are 3 FeatureClasses:

point
SF_Schools
BA_TransitStops

line
BA_BikeRoutes

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\testPath.gdb



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 15/37

Using geoprocessing tools
As we've seen, Geoprocessing tools used in a script are the same tools as are used in ArcToolbox, but we
access them by providing the tool name. But remember that there may be more than one tool by a given name --
for instance, there are two Clip tools, one vector-based in the Analysis toolbox, one raster-based in Data
Management Tools. Each is distinct, working with different types of data, but how do we distinguish them in a
script? In ArcToolbox, we select which clip we wish to use, but in a script we have to distinguish them in some
way. To do this we use aliases, which become part of the tool name.

➦ Go to the help for the Buffer and Clip tools of the Analysis Toolbox, and then look at their scripting syntax.
Note that the syntax gives each an alias that identifies which toolbox it comes from, in this case analysis.

Clip_analysis (in_features, clip_features, out_feature_class, cluster_tolerance)

Buffer_analysis (in_features, out_feature_class, buffer_distance..............)

🌎 Make sure you have a map open and available to display results along the way.



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 16/37

Before we use these tools, let's learn about some shortcuts and other ways to get help.

Toolbox shortcuts
Each of the geoprocessing toolboxes has an alias, which is useful since they become part of the name of the
tool. This has been needed since tools in different toolboxes may have the same name (though ArcGIS is moving
away from that). So the full name of a tool includes its alias, such as the Clip  tool in the Analysis toolbox is
called with Clip_analysis  or more fully arcpy.Clip_analysis  and Slope  in the Spatial Analysis toolbox
(alias sa ) is called as arcpy.Slope_sa . We can shorten the alias even further by creating variable shortcuts
with unrequired but standard codes by definining them as for instance from arcpy import analysis as AN .
Here are some of the toolbox aliases and codes:

toolbox alias code

Analysis analysis AN

Conversion conversion CV

Data Management management DM

So to set up these shortcuts, we could include the following code:

from arcpy import analysis as AN
from arcpy import conversion as CV
from arcpy import management as DM

... then we can simply call Clip for instance as:

AN.Clip()

For Spatial Analyst, we can make the nice Map Algebra syntax work by importing everything and not having to
use a shortcut with:

from arcpy.sa import *

This is also done with Image Analyst ( arcpy.ia ).

⌨ Write some boilerplate that creates all of these toolbox shortcuts, and also imports arcpy  and os , creates
the shortcut to arcpy.env  as env , and sets env.overwriteOutput = True . Then assign a new variable
proj  as os.getcwd()  -- this will be useful in specifying the path to the project folder. And finally set the

workspace to hmb.gdb .

In [ ]: #

In [ ]: env.workspace

Out[ ]: 'hmb.gdb'



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 17/37

Note that in the above code, we just set the workspace, since we are only working in that one
place, so that makes for less indented code. It would also work by wrapping everything in a
with  block. Your choice.

Getting help directly from the code cell
It makes your life easier to access help directly from a code cell. Once you have your shortcuts, you can easily
get help with the parameters for various tools.

⌨ Use help()  to get help for AN.Clip :

In [ ]:

Help on function Clip in module arcpy.analysis:

Clip(in_features=None, clip_features=None, out_feature_class=None, cluster_to
lerance=None)
   Clip_analysis(in_features, clip_features, out_feature_class, {cluster_tol
erance})
   
      Extracts input features that overlay the clip features.
   
   INPUTS:
    in_features (Feature Layer / Scene Layer / Building Scene Layer / File):
        The features that will be clipped.
    clip_features (Feature Layer):
        The features that will be used to clip the input features.
    cluster_tolerance {Linear Unit}:
        The minimum distance separating all feature coordinates as well as t
he
        distance a coordinate can move in x or y (or both). Set the value
        higher for data with less coordinate accuracy and lower for data wit
h
        extremely high accuracy.Changing this parameter's value may cause
        failure or unexpected
        results. It is recommended that you do not modify this parameter. It
        has been removed from view on the tool dialog box. By default, the
        input feature class's spatial reference x,y tolerance property is
        used.
   
   OUTPUTS:
    out_feature_class (Feature Class / File):
        The dataset that will be created.



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 18/37

⌨ Note the parameter names, and call the Clip function with in_features = proj + "/pen.gdb/geol" ,
clip_features  to "areaclip" , and out_feature_class  to "geol" .

I recommend using parameter names explicity (so clip_features="areaclip"  for instance),
since even though verbose it makes your code more readable, and you can skip over unneeded
parameters.

In [ ]: #

What's the msg =  part for? It's simply to avoid the code chunk output for displaying the word
"Messages". All geoprocessing tools, like Clip , are objects that have a value, and normally that
value is a set of messages of how the tool ran. Sometimes you want to see these, to help debug
a problem that doesn't cause the tool to fail, what's called a "logic error". But when everything is
working fine, we can avoid seeing the "Messages" header displayed by simply assigning the tool
result to a variable we'll just call msg . Don't confuse these with tool outputs.

It's fine to not use the msg =  if you don't mind seeing "Messages" (and I won't include that trick
in code suggestions later in this notebook), but later on we'll be running code that run a lot of
tools, so we'll see a lot of "Messages" printed out unless we use this trick.

🌎 Now see what you got on the map (this is where it's handy to be in ArcGIS Pro), and make sure you
understand what was done, what was named and where inputs were accessed and outputs were stored.

⌨ Now do the same thing for AN.Buffer -- use help to check the parameter names etc. -- and run it to create an
output feature class "stbuff200" with "streams" (in hmb.gdb) as input features and a buffer distance of 200. Check
the naming of parameters carefully. 🌎 Then check the output on the map.

In [ ]: #

Spatial Analyst tools & Map Algebra
As we've already seen, we can now use map algebra and create raster objects. Map algebra was invented by
Dana Tomlin in the early 1980s.
The map algebra method involves creating raster objects created either from raster data or from tools that
typically access other raster objects.



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 19/37

⌨ In ArcGIS Pro, add 'elev', 'landuse', and 'geology' rasters from hmb to a new map. We'll be accessing these
rasters by name and start by assigning them to new raster objects.

elev = Raster('elev')
landuse = Raster('landuse')
geology = Raster('elev')
elev

Note that only the last object provided in the code cell is displayed. This is similar to what we've seen before with
dataframes. This is telling us that code cells work somewhat like functions that return one item.

In [ ]: #

⌨ Use a series of map algebra statements to end with a steepurban  raster object that represents slopes > 10
and landuse < 20 (urban):

steep = Slope("elev") > 10
urban = Raster("landuse") < 20
steepurban = steep & urban
steepurban.save("steepurban")
steepurban

Notes:

The landuse  raster required assigning to a raster object before we could query it essentially with landuse 
< 20 , so this required Raster(landuse) < 20 . This may be surprising, since we didn't have to make a
raster object out of elev  before deriving the slope of it; this is because the Slope tool is expecting an
elevation raster so it converts it for you.
Raster objects are retained in memory, but not retained in your workspace, requiring you to save them to
have them available later without having to run the code again.
You should see a result displayed only after you've saved the result as shown above. The temporary rasters
steep  and urban  won't similarly display, since we haven't saved them.

Out[ ]:



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 20/37

In [ ]: #

Processing as a numpy array
Numpy arrays provide similar map algebra capabilities as we have just been using in ArcGIS, and add some
other specialized capabilities in its numerical methods, such as 2D Fourier transforms. One limitation to ndarrays
however is that they don't use a geospatial coordinate referencing system, so if we process something and bring
it back into ArcGIS we'll need to establish the crs.

We'll try to a couple of operations, one not using crs but creating a graph from data, the other going both ways --
from ArcGIS raster object to ndArray and back again -- and seeing how we maintain the crs.

Create a histogram from a converted ndArray
We could create a histogram in ArcGIS of course, but doing this in Python is of course more automated.

⌨ Import numpy as np, and then create a 2D ndarray from the elevation raster object with:

elev2D = arcpy.RasterToNumPyArray(elev)

Ok, now we have a 2D ndarray. We can make a histogram out of it, but this will require making it a 1D ndarray,
which I only discovered by trying to create a histogram from the original 2D ndarray. (You might try this to see
what you get.) The conversion to a 1D array uses the .reshape  numpy method but we don't to have to figure
out the size, so the size parameter is set to -1 to get the total cells. (You could also use .flatten )... then
convert it to a 1D ndarray in order to make a histogram out of it.

elev1D = np.reshape(elev2D,-1)

In [ ]: #

Out[ ]:



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 21/37

⌨ Now we can make the histogram in matplotlib:

import matplotlib.pyplot as plt
plt.hist(elev1D, bins='auto') # this applies .histogram connected to plt, or someth
ing like that...
plt.title("Histogram of elev")
plt.show()

In [ ]: #

Converting there and back again, using np map algebra along the way

First we need to get the spatial reference, lower left corner and cell size from elev :

sr = elev.spatialReference
lowleft = elev.extent.lowerLeft
cellsize = elev.meanCellHeight

In [ ]: #

#

Then we'll convert to a ndarray

elev2D = arcpy.RasterToNumPyArray(elev)

In [ ]: #

Then we'll see what we have as a 2D ndarray:

import matplotlib.pyplot as plt
fig = plt.figure()
plt.imshow(elev2D, interpolation='none')
plt.colorbar()
plt.title("elev")
plt.show()

In [ ]: #

Out[ ]: 60.0



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 22/37

Then we'll do some map algebra, but to the ndarray with numpy:

highthreshold = 300
highElev_np = elev2D > highthreshold

In [ ]: #

Then display that:

fig = plt.figure()
plt.imshow(highElev_np)
plt.colorbar()
plt.title("high elev (elev > {})".format(highthreshold))
plt.show()

In [ ]: #

So it looks like this worked fine. The 1s represent True, and 0s False. Interestingly, however, these are stored as
True and False in the ndarray, though the legend shows it as numeric.

We could have just done this operation in ArcGIS, but the process of there and back again is the same, so it will
serve as an example. To bring this back into ArcGIS, however, this format is not recognized, so I figured out a
trick of converting the Trues and Falses to 1s and 0s.

highElev_np1 = (highElev_np * 2)/2

In [ ]: #

Then we can bring it back in and apply the various environment settings we grabbed earlier:

highElev0 = arcpy.NumPyArrayToRaster(highElev_np1, lowleft, cellsize, cellsize)
DM.DefineProjection(highElev0, sr)

In [ ]: #

For some reason, we need to make the result discrete, so the following works for that:

highElev = Con(highElev0==1,1,0)
highElev.save("highElev_np")
highElev



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 23/37

In [ ]: #

Here's a simpler example that doesn't need unique values, and stands to represent a process involving
continuous numerical data:

elevft2D = elev2D / 0.3048
elevft2D
elevft = arcpy.NumPyArrayToRaster(elevft2D, lowleft, cellsize, cellsize)
arcpy.DefineProjection_management(elevft, sr)
elevft

In [ ]: #

Using Describe & Exists for Geoprocessing
There are many situations in which we want to use characteristics of GIS datasets to process other data. For
instance, in raster operations we may want to use the extent of one dataset to delimit another dataset, much like
a clip operation, or to detect the type of topology of a feature class. The value of Describe and Exists for coding
really makes sense when you realize that it provides your code with the eyes to see information about your data;
your code is otherwise blind.

⌨ Start by running the boilerplate we used in the last notebook with module imports and shortcuts. Also initially
set the workspace to hmb.gdb .

Out[ ]:

Out[ ]:



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 24/37

In [ ]: #

Describe
➦ Start by exploring the help system to get a sense of the scope of ArcGIS objects you can get information
about. Google ArcGIS Pro Describe  should get you to somewhere like this, and you may want to change to
the version of ArcGIS Pro we're using (though there won't be many differences in Describe.
https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/describe.htm (https://pro.arcgis.com/en/pro-
app/latest/arcpy/functions/describe.htm)

In contrast to geoprocessing tools, where we can use help()  from a code cell to get what we
need to run the tool, help(arcpy.Describe)  doesn't provide us with much help because what
we need to know about are the objects we want to describe and what their properties are. The
link to the help system is thus the best way we have to access this information. It's similar to
environment settings. For both objects and the environment there are many settings, though I'm
usually just looking for a few of them, like the extent (which is part of the environment and
associated with objects like feature classes and rasters) and its various parts, like XMin, etc.

There you should be able to find your way to explore properties of various data types that will be useful for us:

Dataset
FeatureClass
File
Folder
Layer
Raster Band
Raster Dataset
Table

and lots of others. You should use this resource as we're learning about various Describe properties. We'll start
with a problem needing to get the properties of a raster dataset in order to be able to trim it.

In [ ]: #

Out[ ]: ['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'stbuff200']

https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/describe.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/describe.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/describe.htm


1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 25/37

Using Describe to get extent
We'll write some code to use Describe to obtain the bounding rectangle of a raster, then use that to clip the
edges by a percentage. We're going to need the extent of the raster, but how do we know what's that's called or
what it's associated with?

➦ Go to the same Describe help page we were just looking at, and go to the Raster Dataset properties. (There is
no set of properties for anything called simply a "raster", so Raster Dataset seems the closest.).

There we'll see several properties:

bandCount
compressionType
format
permanent
sensorType

These all look useful, but aren't what we're looking for. But we see in the heading of the Raster Dataset
properties section a message that says that Dataset properties and Raster Band properties are also supported.
Datasets include rasters and feature classes, and both have an extent  (something that is also apparent if you
go to the Geoprocessing Environments dialogs in ArcGIS Pro.)

⌨ We can access the extent  property for any data set, including rasters, via the Describe object. We'll start
by assigning that object to a variable:

dsc = arcpy.Describe("elev")

... then see what it holds with dsc



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 26/37

In [ ]: #

⌨ You should see displayed nothing of clearly immediate use, simply that it's a "geoprocessing describe data
object", however we can go one step further by first referring to the Describe help system and seeing that
extent  is one of them, so we'll create another variable ext and then display its value with:

ext = dsc.extent
ext

Out[ ]:
catalogPath C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy\hmb.gdb\elev

dataType RasterDataset

bandCount 1

format FGDBR

fields

spatialReference

name (Projected Coordinate System) NAD_1983_UTM_Zone_10N

factoryCode (WKID) 26910

linearUnitName (Linear Unit) Meter

spatialReference.GCS

name (Geographic Coordinate System) GCS_North_American_1983

factoryCode (WKID) 4269

angularUnitName (Angular Unit) Degree

datumName (Datum) D_North_American_1983

For additional help, see arcpy.Describe



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 27/37

In [ ]: #

... and we get yet another object, the Extent object.
⌨ If we then check the help system for Describe and click on what Extent contains, we can seet that it includes
things like XMin , YMin , XMax , YMax , and quite a few other things. So we should be able to see these as a
tuple with:

ext.XMin, ext.YMin, ext.XMax, ext.YMax

In [ ]: #

... and if we don't want to use the variables we could get them with:

arcpy.Describe("elev").extent.XMin

etc., although that's slower since it has to call Describe for each of the values we're looking for.

In [ ]: #

Out[ ]:
XMin (Left) 545692.537124

XMax (Right) 557692.537124

YMin (Bottom) 4141427.326978

YMax (Top) 4153427.326978

spatialReference

name (Projected Coordinate System) NAD_1983_UTM_Zone_10N

factoryCode (WKID) 26910

linearUnitName (Linear Unit) Meter

spatialReference.GCS

name (Geographic Coordinate System) GCS_North_American_1983

factoryCode (WKID) 4269

angularUnitName (Angular Unit) Degree

datumName (Datum) D_North_American_1983

Out[ ]: (545692.5371239004, 4141427.3269781955, 557692.5371239004, 4153427.326978195
5)

Out[ ]: (545692.5371239004, 4141427.3269781955, 557692.5371239004, 4153427.326978195
5)



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 28/37

There are similar ways of accessing other Describe properties, and this will be very useful for
working with data in arcpy. Extent properties just happen to be one that I need the most. In the
following code we need to write, we'll use these four extent variables ext.XMin  etc. to trim a
raster.

Using the extents to trim a raster
We'll use the extent variables ext.XMin , ext.YMin , ext.XMax , and ext.YMax  to create a smaller area
with a third of the width trimmed off each side and the top and bottom. This is admittedly kind of arbitrary, but it
demonstrates how we can access these values to manipulate our data, and it's easy to see what it's doing. The
method we'll apply is:

1. Create width  from ext.XMax-ext.XMin  and height  from ext.YMax-ext.YMin
2. Create a trim width w_trim  as width/3.0  and a trim height h_trim  as height/3.0
3. Create a rectangle object representing a trimmed areas as a string variable rect  of four numbers

separated by spaces, created using the f string method

f"{ext.XMin + w_trim} {ext.YMin + h_trim} {ext.XMax - w_trim} {ext.YMax - h_trim}"

⌨ We'll do the above first. It should be pretty easy to understand as well as code. End the code cell by
displaying rect  to see if the numbers and format looks right.

In [ ]: #

In [ ]: #

⌨ Finally use the rect string to Clip the elev raster to that extent, producing "trimmed_elev"  and use
Raster()  to create a raster object to display it (no need to save the raster object -- we're done with it so just

want to display it. Use help() with DM.Clip  to get the parameters. The first three parameters is all you'll need,
but use the explicit method for clarity.

⛬ Interpret what the above is doing, including comparing with what you see with Raster("elev") .

:

Out[ ]: '549692.5371239004 4145427.3269781955 553692.5371239004 4149427.3269781955'

Out[ ]:



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 29/37

In [ ]: #

⌨ Still with the workspace set to hmb.gdb , see what you get with:

arcpy.Describe("streams").DataType
arcpy.Describe("landing").ShapeType
arcpy.Describe("landuse").DataType
arcpy.Describe("geology").DataType

In [ ]: #

⛬ Interpret what the above is showing us. Can you see how it might be useful? Remember how a program
needs eyes.

Out[ ]:

FeatureClass
Point
RasterDataset
RasterDataset



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 30/37

Using Describe with Imagery (multiple bands)
While orthophotography and satellite imagery is in one way just another raster, most imagery � anything beyond
black & white � comes in multiple bands. Standard color is RGB, so 3 bands, and some hyperspectral satellite
imagery can have hundreds of bands.

⌨ We'll look at a Landsat image in the imagery folder.

Create a new map from the image to see what it looks like. You can change which bands display as red,
green or blue using Symbology settings. You should also be able to understand what is meant by
"landsatHMB201707.tif/Band_1" below from exploring the data.
Use Describe to see how many bands each has and what the cell size is, and fill in the blanks below. The
key Describe properties are .bandCount , a property of the image itself, and .meanCellWidth  or
.meanCellHeightSet , properties of an individual band. For instance, to get the cell size of the Landsat

imagery you'll use:

arcpy.Describe("imagery/landsatHMB201707.tif/Band_1").meanCellWidth

... but to get the bandCount, this would be:

arcpy.Describe("landsatHMB201707.tif").bandCount

❔ What's the band count and cell width?

In [ ]: #

Other Describe objects
There are many, but one I've used a lot is the spatial reference, a dataset property. Probably the most common
use is when creating a new dataset where we need to specify the spatial reference, we can "borrow" it from an
existing dataset.

⌨ We'll borrow one from elev  by assigning sr = arcpy.Describe(elev).spatialReference , then we'll
use it with the and create a new feature class named "empty"  (since we don't have anything to put in it yet).
Check out the help system for what DM.CreateFeatureclass  needs, and we'll provide it with the out_path
as env.workspace , the out_name  as "empty"  and the spatial_reference  as sr .

Then display sr  to see what spatial reference we assigned, and use arcpy.ListFeatureClasses()  to
confirm it got created.

30.0
7



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 31/37

In [ ]: #

In [ ]: #

Exists
An even more basic piece of information about a dataset is whether it exists or not. Testing for the existence of a
dataset can also help us avoid errors, since setting overwriteOutput to True (1) doesn't work for some tools (or at
least hasn't always worked in the past). A very useful technique is to detect the existence of a particular dataset
using arcpy.Exists , which can be used to detect any type of data.

Detect if a dataset exists
⌨ For instance if you wanted to detect whether an input dataset existed and then delete it if so, you could do
something like this. We'll use this to delete the "empty" feature class we just created.

if arcpy.Exists("empty"):  DM.Delete("empty")

In [ ]: #

Out[ ]:
name (Projected Coordinate System) NAD_1983_UTM_Zone_10N

factoryCode (WKID) 26910

linearUnitName (Linear Unit) Meter

spatialReference.GCS

name (Geographic Coordinate System) GCS_North_American_1983

factoryCode (WKID) 4269

angularUnitName (Angular Unit) Degree

datumName (Datum) D_North_American_1983

Out[ ]: ['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'stbuff200', 'empty']

['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'stbuff200', 'empty']



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 32/37

Delete before creating a new dataset
It's sometimes useful to delete something before creating a new dataset of the same name. This used to be
essential before env.overwriteOutput = True  became more reliable, but there continue to be situations
where you need to do this.

if arcpy.Exists("stbuff200"):  DM.Delete("stbuff200")
AN.Buffer("streams", "stbuff200", 200)

Write code that does the above (in the hmb.gdb workspace), and confirm that it works by running it a couple of
times. Include some statements that display the feature classes ( print(arcpy.ListFeatureClasses()) )
after deleting and then after creating it anew.

In [ ]: #

In [ ]: #

In [ ]: #

Detect if a field exists
You can't use the above method to test whether a field exists, but the following use of ListFields does the trick.
⌨ Use the following code to add a field as long as it doesn't already exist. Then as before, try it a second time
� without the test, it would create an error. Note: you may need to close and reopen your project if refresh
doesn't work.

if not arcpy.ListFields("streams","stream_class"):
   DM.AddField('streams',"stream_class", 'LONG')

⌨ Check to see if this worked with

for fld in arcpy.ListFields("streams"):    
  print(fld.name)

We'll use it later in the Data Management and Cursors section to first check whether a field exists
before we try to create it.

stbuff200 exists

['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'stbuff200', 'empty']

['streams', 'areaclip', 'faults', 'pourpoint', 'publands', 'roads', 'landin
g', 'geolstr200', 'geol', 'empty', 'stbuff200']



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 33/37

In [ ]: #

The approach we just used was to only create the field if it doesn't exist. What if we wanted to
delete it if it does exist? To avoid errors, we'll similarly need to confirm it exists before we delete
it.

⌨ Modify the above code to create the stream_class  field after first deleting it if exists. The basic usage with
explicit parameter names is DM.DeleteField(in_table, drop_field) . To confirm that it's working, use the
for loop twice: after deleting it and then after creating it anew.

In [ ]: #

OBJECTID
Shape
FNODE_
TNODE_
LPOLY_
RPOLY_
LENGTH
STREAMS_
STREAMS_ID
ST_CODE
Shape_Length
stream_class

OBJECTID
Shape
FNODE_
TNODE_
LPOLY_
RPOLY_
LENGTH
STREAMS_
STREAMS_ID
ST_CODE
Shape_Length
OBJECTID
Shape
FNODE_
TNODE_
LPOLY_
RPOLY_
LENGTH
STREAMS_
STREAMS_ID
ST_CODE
Shape_Length
stream_class



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 34/37

Create a Smaller Workspace Using Exists and Describe in a
Loop
The challenge is to mask (using "city"  as the mask) a whole series of rasters and put them into a new
workspace. In the process, use a method for checking to see if an output exists before we create a new one. For
this script, we'll use Describe  and Exists  as part of processing a large set of datasets (however to save time
we'll just process a small set.

⌨ We'll start by creating a new geodatabase HMBcity.gdb  in the project folder, so parallel to our current
hmb.gdb . For this we can use the path to the project folder stored as the variable proj  and also define a

newPath variable which holds the path to the new geodatabase, and delete it first if it already exists before
creating a new one.

newWS = "HMBcity.gdb"
proj = os.getcwd()
newPath = proj + "/" + newWS
if arcpy.Exists(newPath):
   DM.Delete(newPath)
DM.CreateFileGDB(proj, newWS)

Note that in this process, we'll keep hmb.gdb  as our workspace, and we'll then reference
newPath  for where we want to send the outputs.

In [ ]: #

⌨ Now we'll loop through a list of rasters created with the ListRasters  method assigning each to ras , (hint:
for ras in  ...) and use the ExtractByMask  tool to clip, storing the clipped city area raster in the hmbcity

folder.

Inside the for loop, use an if structure to only process the single band rasters if 
arcpy.Describe(ras).bandCount == 1:  and in the if structure:

ExtractByMask  using input ras and mask raster "city"  and assigning to newras
Save newras using the output name derived as outputname = newPath + "/" + ras . To save time
just loop through `arcpy.ListRasters("e")`*
In the loop print the raster name that is being processed so you can see its progress.

In [ ]: #

⌨ Wrap up by listing the rasters. (Use a with  structure.)

elev
elev30



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 35/37

In [ ]: #

Convert geodatabase feature classes to shapefiles
⌨ Use feature classes from pen.gdb to create a smaller workspace called penshapes (parallel to pen.gdb, so as
a folder workspace inside pen), including all of the feature classes in pen.gdb converted to shapefiles in
penshapes:
cities geol landuse water faultcov_arc

Hints:

You can borrow a lot of the logic used in the previous script to create the parallel workspace. It's simpler
because there aren't bands.
You'll want to have: from arcpy import conversion as CV
Since you'll be using it 3 times and it has to be the same, set a string variable to hold the folder name:
shapefolder = "penshapes"  and you can build its path as shapesPath = proj + "/" + 
shapefolder , and start by deleting it if it already exists.

In [ ]: #

In [ ]: #

⌨ Continuing...

Use CreateFolder to create the penshapes folder. (We won't use a geodatabase because our goal is to
create shapefiles.)

Look up the usage for CreateFolder -- it needs both a folder to put the folder in and the name of
the folder you want to create.

In [ ]: #

C:\Users\900008452\Box\course\625\exer\Ex07_08_arcpy/penshapes



1/27/24, 2:50 PM Ex07_arcpyIntro_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex07_arcpyIntro_results.html 36/37

⌨ Continuing...

In your loop through the feature classes, you'll need a tool from the conversion toolbox:
FeatureClassToShapefile  and the output folder would be the shapesPath  created above.

If you store a feature class into a folder, it will be created as a shapefile.

Note that since the output is specified as the folder name, you don't need to specify the shapefile
name as the output, and it will simply be named the same as the original.

As before, check to see what you get by setting the workspace to shapesPath and printing
the list of feature classes (shapefiles are also feature classes).

In [ ]:

In [ ]: #

Feature to raster
To create rasters from feature classes, you need to specify a field to get the Value to assign to the raster.

⌨ To do this, create a two Python lists, to hold the dataset pairs geol , TYPE_ID , landusePen , LU_CODE  in
pen.gdb .

Then convert each feature class in pen.gdb to a raster (to store back in the same gdb), with the corresponding
field, and use "60" as the cell size. *Hint: to connect the indices for the feature class and the field, you'll want to
loop through the indices like for i in range(len(feat))

feat = ["geol", "landusePen"]
fld = ["TYPE-ID", "LU-CODE"]

In [ ]: #

Out[ ]: 'C:\\Users\\900008452\\Box\\course\\625\\exer\\Ex07_08_arcpy\\hmb.gdb'

['areaclip.shp', 'empty.shp', 'faults.shp', 'geol.shp', 'geolstr200.shp', 'la
nding.shp', 'pourpoint.shp', 'publands.shp', 'roads.shp', 'stbuff200.shp', 's
treams.shp']



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 1/42

Debugging and Messaging
Debugging in Jupyter is not quite the same as you may find in an IDE like Spyder, and for writing script tools we'll
probably want to explore those methods. However, the cell structure of Jupyter does provide some decent
debugging options.

Splitting cells
A useful way of debugging in Jupyter is to break up your code into multiple code cells. This is also a good idea
for providing more documentation to your code so you will remember what it's doing and for anyone who reads
your code to understand it. You can either write your code this way from the beginning or split it by inserting your
cursor where you want it split and using Edit/Split Cell .

⌨ Copy one of your fully working code cells here, and then split it into code cells at likely locations.

In [ ]:

Print statements
The tried and true method used by programmers since the dawn of time: simply printing the current value of
variables, or printing information about the progress of the script. Simply add a print statement to tell the user
where the program has gotten to, and once you're done debugging, you can leave it as a comment statement so
you'll remember later on what you're doing. Some good places to put print statements include:

at the end of the code cell, where you've arrived at a product of that cell. This is a lot like a function, when
you have one final result.
during each step of a loop, where a print statement can show progress. If an operation takes a lot of time,
this can show you that it's still running (and isn't hung up) and give you a sense of how much time it'll take to
complete (you could probably also include some code to derive an estimated time remaining to complete the
task).

You could keep print statements in your code but just turn them off with a #, as shown here:

AN.Buffer("streams", "stbuff200", 200)
#print("Finished Buffer.  Now clipping...")   
AN.Clip("geol", "stbuff200", "geolstr200")

⌨ For one of the programs you've already run, add print statements to tell the user what the program is doing,
especially during a loop.

In [ ]:



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 2/42

try...except blocks
One way of handling errors is to provide some code to run in case an "exception" (error) is raised. This allows
you to put things back in order and also display any messages that the offending code produced. A try...except
block can go anywhere in your code, and code within the try block is run until an exception is raised where it
shifts execution to the except block, which only runs if an exception is raised.

⌨ For your feature to raster code created earlier, copy it into the next code cell. Then insert a try:  statement
shortly before the code where you're creating the feature and field codes, and then at the end of the section to
evaluate (where the exception might be raised), insert an except:  statement. Indent all of the code in between,
as well as the code to run if the exception is raised. Make sure to create an exception with a typo -- a misspelling
of the field name perhaps.

Heres what that part of the code might look like, where you note that LU-CODE  is typed instead of LU_CODE ,
the correct field name in the attribute table:

try:
   feat = ["geol", "landusePen"]
   fld = ["TYPE_ID", "LU-CODE"]
   env.workspace = projdir + "\pen.gdb"
   for i in range(len(feat)):
       CV.FeatureToRaster(feat[i], fld[i], feat[i] + "ras", 60)
except:
   print(arcpy.GetMessages())

Note that what's in the exception section is printing arcpy.GetMessages()  which is what is produced from the
most recently executed geoprocessing function. You'll find that the message displayed is very clear about what
the problem is.

In [ ]: #

➦ Explore the GetMessages  section of the help system. You'll find for instance that different types of messages
can be selected to display, like warnings, general messages and errors; by default, all messages are displayed.
You may also see .AddMessage  which doesn't really do anything in Jupyter, but is useful when running script
tools and provides information to the user when they run the script tool (which print()  does not).



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 3/42

Data management
Processing data in tables, as well as creating fields to store those data, and other data operations are important
in GIS work. Using a script is a good choice when you need to perform a sequence of data management and
analysis steps involving data tables. In some cases we need to process data fields, and there is an array of tools
we can use to, for example, add fields, calculate values for fields, delete fields, and join tables to bring in
additional data fields via a relate field. Some of these tools also create new summary tables, where input data
fields are summarized using various statistics. In other cases, we need to work with rows of data, which might be
individual features with vector data or values for raster data; we'll learn about using cursors to process rows, one
at a time.

Data Management (including related Analysis) Tools
First, we'll look at some of the tools we can use to process data tables, primarily involving fields. A few tools also
select records (by attributes), or copy or delete selected records.

Toolbox Tool What it does Output

Analysis Frequency Calculates frequency statistics for field(s) in the input table table

- Statistics Calculates summary statistics for field(s) in the input table. table

- Select Uses a where clause to selects features from an input to
create an output new feature class

- TableSelect Extracts selected attributes from an input table, using an SQL
Where clause table

Data
Management AddField Adds a field to an data table field in existing table

- CalculateField Calculates a value for a field using an expression values in an existing
field

- DeleteField Removes a field from a table

- AddXY Adds an x & y (and maybe z) fields to a point feature class x, y, etc. fields with
values

- CopyFeatures Copies selected features to a new feature class new feature class

- DeleteFeatures Deletes selected features

- AddJoin Joins a table to a layer (or a table to a table) based on a
common field join relationship

- RemoveJoin Removes an existing join

- SelectLayerByAttribute Creates, updates, or removes a selection on the layer or table
view using an attribute query

- CreateFeatureclass Create a new feature class (including shapefiles) feature class



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 4/42

Create and calculate a new field
⌨ Using the marbles.gdb  geodatabase, create code that adds the field "ContourFeet" to a 10m elevation
contour created from the elevation raster (you'll need to create the contours first), and calculates its values as
!elev! / 0.3048 . (Fields are denoted with exclamation point brackets in expressions.) Here are some hints:

Start with your boilerplate including working with Spatial Analyst and the DM shortcut to the data
management toolbox. As before, save the script in the project folder and use the relative path method.
To avoid creating a problem due to inconsistent names, before running the statements that need them,
assign names of fields and datasets to string variables. This is good practice (assign hard-coded values only
once in a script) and also prepares you for getting these as inputs in a script tool later on. Here are some
you'll want to use:
contourfcl = "contours10m"  (for the contour feature class)
elevras = Raster("elev")  (for the elevation raster)
elevfeet = "ContourFeet"  (for the field name)

Use Exists and Delete to delete contourfcl if it already exists.
Create the contour feature class using the Contour tool in Spatial Analyst. Note that since this creates a
feature class, not a raster object, so doesn't work in map algebra. However, since you've imported
everything (*) from arcpy.sa, you can run the tool with some shorthand as: Contour(elevras, 
contourfcl, 10)  to create 10m contours
To display the resulting field names with one line of code, use:

for fld in arcpy.ListFields(contourfcl):  print(fld.name)

Add the elevfeet field as type "DOUBLE" after first making sure it doesn't already exist, with if not 
arcpy.ListFields(contourfcl, elevfeet):
Use CalculateField from the management toolbox to assign "!Contour! / 0.3048"  to the elevfeet field.
Finally check out the results in ArcGIS.

In [ ]: #

In [ ]: #

Note the use of !Contour!  to represent the Contour  field. This is required in this type of
expression.

AddXY
⌨ Create code that uses the AddXY tool in the management toolbox (features toolset) to add x & y values to
"samples" in the marbles workspace.



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 5/42

In [ ]: #

Using codeblocks to loop through data when calculating values
In the next section, we'll be looking at cursors, which has even more capabilities for dealing with individual
records, but CalculateFields  can also using a function to operate differently depending on a given value, by
using a codeblock  function. If you run the Calculate Field  geoprocessing tool using the dialog, you'll see
the Code Block  textbox. Here's an example. We have whale count data in a CSV from 2019, and we'd like to
adjust whale counts from two observers:

Allison has poor distance vision but we've found from independent observers that there are actually twice as
many whales visible as she reports.
Sydney exaggerates counts, and from independent observers we've found that it's best to reduce his counts
by half.

First we'll give you a taste of how we might use cursors to print an attribute table as a pandas dataframe:

In [ ]: import arcpy, os
proj = os.getcwd()
import pandas as pd
arcpy.env.workspace = proj
def table(tbl):
   fld_list = arcpy.ListFields(tbl)
   flds = []
   for fld in fld_list: flds.append(fld.name)
   table = []
   cur = arcpy.SearchCursor(tbl, flds)
   for row in cur:
       rowList = []
       for fld in flds:
           rowList.append(row.getValue(fld))
       table.append(rowList)        
   del cur
   df = pd.DataFrame(table, columns = flds)
   return df



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 6/42

So we'd like our code to multiply Allison's counts by 2, Sydney's by 0.5, and leave the rest the same -- so multiply
by 1. Our function is able to detect these conditions and come up with the adjusted count, stored in a new field in
the attribute table. See if you can correctly interpret it.

whalesWS = "whalesGGate"
if not arcpy.Exists(whalesWS): 
   arcpy.CreateFolder_management(proj,whalesWS)
else: print(whalesWS + " exists.")

codeblock = """def multiplier(observer):
 if observer == "Allison":
    return 2
 elif observer == "Sydney":
    return 0.5
 else: return 1"""
whaleData = proj+"\\ex07_08_arcpy_data\\Humpback_2019.csv"
env.workspace = proj+"\\"+whalesWS
if arcpy.Exists("whales.shp"):  DM.Delete("whales.shp")
DM.XYTableToPoint(whaleData, "whales.shp", x_field="Longitude", y_field="Latitude")
expression = "!n_whales! * multiplier(!Observer!)"
adjustedCountFld = "adjCount"
if not arcpy.ListFields("whales.shp",adjustedCountFld):
  DM.AddField("whales.shp",adjustedCountFld,"DOUBLE")
arcpy.CalculateField_management ("whales.shp", adjustedCountFld, expression, "PYTHO
N", codeblock)
table("whales.dbf")

Learn more about this at: https://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000004m000000
(https://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000004m000000)

https://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000004m000000
https://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000004m000000


1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 7/42

In [ ]: #

Select
Selecting by attributes is a common need.

⌨ Use help(AN.Select)  to learn about its parameters.

⌨ We'll want to set the workspace to "pen.gdb" , and use arcpy.ListFeatureClasses()  to see what it
contains.

whalesGGate exists.

Out[ ]:
FID Shape Observer Year Month Day Hour Minute Latitude Longitude

0 0
(-122.493592

37.794274 NaN
NaN)

Allison 2019 4 2 12 45 37.794274 -122.493592

1 1
(-122.459953

37.830697 NaN
NaN)

Allison 2019 5 1 11 30 37.830697 -122.459953

2 2
(-122.599558

37.81561 NaN
NaN)

Allison 2019 5 4 12 30 37.815610 -122.599558

3 3
(-122.604379

37.797698 NaN
NaN)

Allison 2019 5 4 15 30 37.797698 -122.604379

4 4
(-122.527239

37.7292360000001
NaN NaN)

Allison 2019 5 14 11 30 37.729236 -122.527239

... ... ... ... ... ... ... ... ... ... ...

172 172
(-122.515109

37.8055350000001
NaN NaN)

Allison 2019 10 13 8 30 37.805535 -122.515109

173 173
(-122.809715

37.6611310000001
NaN NaN)

Allison 2019 10 13 10 0 37.661131 -122.809715

174 174
(-122.947331

37.730912 NaN
NaN)

Allison 2019 10 13 2 0 37.730912 -122.947331

175 175
(-122.620435

37.782788 NaN
NaN)

Allison 2019 11 9 12 30 37.782788 -122.620435

176 176
(-122.569333

37.768944 NaN
NaN)

Allison 2019 11 9 1 0 37.768944 -122.569333

177 rows × 13 columns



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 8/42

In [ ]: #

⌨ For the land use feature class in pen.gdb, find out what the fields are. You'll want to find the land-use code.

In [ ]: #

⌨ Use the Select  tool from the analysis toolbox with the input features being the land use feature class,
create "urban" as the output feature class, and use a where clause that gets all land-codes under 20.

In [ ]: #

🌎 Check the map to confirm that you got what you were hoping for.

Layers
Often you'll want or need to work with layers similar to how you often work in a map. Instead of creating a new
feature class with a selection, you might apply a selection query to a layer.

⌨ Let's do the same thing we just did but create the output as a layer named "Urban" by using the
MakeFeatureLayer tool in the data management toolbox. Use the same input feature class and where clause.

In [ ]: #

🌎 Then check out the results on the map. In the contents, go to the properties of both this new layer "Urban"
and the previous feature class "urban" to check their source.

❔ What do you find?

⛬

Out[ ]: ['cities', 'faultcov_arc', 'geol', 'water', 'landusePen', 'urban']

OBJECTID
Shape
AREA
PERIMETER
LANDUSE_
LANDUSE_ID
LU_CODE
Shape_Length
Shape_Area



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 9/42

Cursors
Cursors give you access to values in your data fields, and allow you to loop through records in your data tables.
Since each record (row) might be a vector feature or a raster value, this gives you considerable power to process
your data, manipulate and create geometries, and develop tools that can do what isn't possible in the stock
ArcGIS GUI.

There are three types of cursors:

SearchCursor : read values in a row
InsertCursor : insert new rows
UpdateCursor : to change values in rows and delete rows

⌨ First we'll use a simple cursor that goes through the X & Y values of a feature class by getting the first part of
the value in the the shape field, after determining that field's name. Note that all geometries have parts, which
make sense for polylines and polygons, but even points have parts, even if there's only one part, as there is
here. Note that you need to delete the cursor at the end.

It's useful to remember that each feature is a row in the database. The following code loops through the
database as a "cursor" scrolling through the rows. The for ptf in cur:  assigns each row feature to an
object we'll call ptf  (for "point feature"), then getValue(shapefld)  gets the shape field value from that
feature. The .getPart()  gets the only part of the point geometry, which is then assigned to pnt , from which
we can get X  and Y  values with pnt.X  and pnt.Y .

import arcpy, os
projdir = os.getcwd()
from arcpy import env
env.workspace = "marbles.gdb"
desc = arcpy.Describe("co2july95")
shapefld = desc.ShapeFieldName
cur = arcpy.SearchCursor("co2july95")
for ptf in cur:
   pnt = ptf.getValue(shapefld).getPart()
   print(f"{pnt.X}, {pnt.Y}")
del cur



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 10/42

In [ ]: #

❔ What shape field was detected?

⛬

⌨ Print out a list of all of the field names, so we can build the next code:

In [ ]: #

⌨ Modify the above code that display pnt.X  and pnt.Y to also display the date, elevation, PM (parent
material, such as rock type), and CO2 value, using the names we found for those fields.

484700.7000000002, 4601827.0
484164.2999999998, 4601425.0
484164.2999999998, 4601425.0
484164.2999999998, 4601425.0
484903.2999999998, 4599948.0
485286.0, 4600092.0
485126.0, 4600703.0
485126.0, 4600703.0
483986.0, 4600852.0
483454.0, 4601142.0
483454.0, 4601142.0
483479.0, 4601325.0
483614.0, 4601283.0
482971.7000000002, 4602427.0
482816.7000000002, 4602599.0
483486.0, 4601072.0
482983.2999999998, 4602562.0
483349.0, 4602502.0
483534.0, 4601546.0
483509.4000000004, 4601475.0
485077.0, 4599968.0
483662.2999999998, 4601293.0

OBJECTID
Shape
DATE_
PDT
CO2_
SOIL°C
AIR°C
D_CM
ID
LOC
ELEV
PM
DESCRIPTIO
X
Y



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 11/42

In [ ]: #

Note in the above output for CO2 and X and Y values have excessive decimal places (resulting from the way
digital numbers are stored, which at one level deep in the decimal places is an approximation).

⌨ Using either the round()  function or (better) the f-strong formatting method, round these to 2 decimal
places for CO2 (how they were originally recorded) and 0 decimal places for X & Y (the approximate accuracy of
our location method in the field).

7/14/95, 4820, till?, 1.0800000429153442, 484700.7000000002, 4601827.0
7/14/95, 5320, schist, 0.5600000023841858, 484164.2999999998, 4601425.0
7/14/95, 5320, schist, 1.0499999523162842, 484164.2999999998, 4601425.0
7/14/95, 5320, schist, 0.47999998927116394, 484164.2999999998, 4601425.0
7/15/95, 5840, neoglacial till, 0.6200000047683716, 484903.2999999998, 459994
8.0
7/15/95, 5800, neoglacial till, 0.8199999928474426, 485286.0, 4600092.0
7/15/95, 5600, mmv, 0.8299999833106995, 485126.0, 4600703.0
7/15/95, 5600, mmv, 0.5199999809265137, 485126.0, 4600703.0
7/15/95, 5520, marble, 0.800000011920929, 483986.0, 4600852.0
7/15/95, 5800, marble, 0.5099999904632568, 483454.0, 4601142.0
7/15/95, 5800, marble, 0.5299999713897705, 483454.0, 4601142.0
7/15/95, 5750, schist, 1.0800000429153442, 483479.0, 4601325.0
7/15/95, 5660, marble, 0.6399999856948853, 483614.0, 4601283.0
7/15/95, 6800, marble, 0.23000000417232513, 482971.7000000002, 4602427.0
7/15/95, 7000, marble, 0.18000000715255737, 482816.7000000002, 4602599.0
7/15/95, 5740, marble, 0.5600000023841858, 483486.0, 4601072.0
7/15/95, 6940, neoglacial till, 0.3100000023841858, 482983.2999999998, 460256
2.0
7/15/95, 6600, marble, 0.8100000023841858, 483349.0, 4602502.0
7/15/95, 5820, schist, 0.4300000071525574, 483534.0, 4601546.0
7/15/95, 5820, schist, 0.6800000071525574, 483509.4000000004, 4601475.0
7/15/95, 5880, neoglacial till, 0.6800000071525574, 485077.0, 4599968.0
7/15/95, 5660, marble, 0.6000000238418579, 483662.2999999998, 4601293.0



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 12/42

In [ ]: #

SearchCursor with the Data Access module
While the above cursor method worked perfectly well for what we were asking it, the Data Access module
( arcpy.da ) provides a lot of advantages. When used with cursors, it will provide an easier way of referencing
coordinates. Making use of it simply requires using arcpy.da  instead of arcpy  when calling the
SearchCursor.

⌨ Try the following code which demonstrates the use of the SearchCursor to simply display the values of two
fields from a shapefile. Note the use of field names as properties of the row.

import arcpy, os
projdir = os.getcwd()
from arcpy import env
ws = env.workspace = projdir + "/curdata"
cur = arcpy.da.SearchCursor("contour.shp", ("ID", "ELEV"))
for row in cur:
   print(f"{row[0]}, {row[1]}")

7/14/95, 4820, till?, 1.08, 484701, 4601827
7/14/95, 5320, schist, 0.56, 484164, 4601425
7/14/95, 5320, schist, 1.05, 484164, 4601425
7/14/95, 5320, schist, 0.48, 484164, 4601425
7/15/95, 5840, neoglacial till, 0.62, 484903, 4599948
7/15/95, 5800, neoglacial till, 0.82, 485286, 4600092
7/15/95, 5600, mmv, 0.83, 485126, 4600703
7/15/95, 5600, mmv, 0.52, 485126, 4600703
7/15/95, 5520, marble, 0.80, 483986, 4600852
7/15/95, 5800, marble, 0.51, 483454, 4601142
7/15/95, 5800, marble, 0.53, 483454, 4601142
7/15/95, 5750, schist, 1.08, 483479, 4601325
7/15/95, 5660, marble, 0.64, 483614, 4601283
7/15/95, 6800, marble, 0.23, 482972, 4602427
7/15/95, 7000, marble, 0.18, 482817, 4602599
7/15/95, 5740, marble, 0.56, 483486, 4601072
7/15/95, 6940, neoglacial till, 0.31, 482983, 4602562
7/15/95, 6600, marble, 0.81, 483349, 4602502
7/15/95, 5820, schist, 0.43, 483534, 4601546
7/15/95, 5820, schist, 0.68, 483509, 4601475
7/15/95, 5880, neoglacial till, 0.68, 485077, 4599968
7/15/95, 5660, marble, 0.60, 483662, 4601293



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 13/42

In [ ]: #

Change the code to display all of the fields. We'll detect the number of fields, and with a bit of extra coding
manage to create a comma-delimited string from it that contains the row of data.

flds = arcpy.ListFields(contours)
for i in range(len(flds)): 
   flds[i] = flds[i].name
print(flds)
cur = arcpy.da.SearchCursor(contours, flds)
for row in cur:
   datastring = ""
   for i in range(len(flds)-1): datastring = datastring + str(row[i]) + ","
   print(datastring + str(row[len(flds)-1]))

In [ ]: #

('ID', 'ELEV')
1, 100
2, 110
3, 120
4, 130
5, 140
6, 90

['FID', 'Shape', 'ID', 'ELEV']
0,(122.18374783759187, 247.1517621378525),1,100
1,(242.11510684480945, 204.621200940252),2,110
2,(280.20973034864556, 193.513895989157),3,120
3,(333.11804451342624, 241.15101055645692),4,130
4,(324.04447355095357, 254.64798628809612),5,140
5,(123.96583398725548, 293.28553785297885),6,90



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 14/42

Using a SearchCursor to write out point features
Geometries are going to be one of the things we'll work with a lot with cursors. We'll briefly explore them, but
there's a lot more to them, so learn more about how these are structured in https://pro.arcgis.com/en/pro-
app/latest/arcpy/classes/geometry.htmexplore (https://pro.arcgis.com/en/pro-
app/latest/arcpy/classes/geometry.htmexplore). We'll be using the Data Access module to facilitate geometry
use.

⌨ Use a SearchCursor to read and print out values for all of the point features, including its id, Calcium
Carbonate concentrations and XY coordinates from samples.shp from the Marble Mountains, in curdata .

Start with the typical boilerplate, including the workspace setting to curdata we just used.
Set a variable ptfeats  to have the path to samples.shp
Create a list of field names composed of "sample_id" , "CATOT" , and "SHAPE@XY"  and assign it to a
variable fields
Use a with  structure to enclose your cursor loop, which limits the cursor to the structure: with 
arcpy.da.SearchCursor(ptfeats, fields) as cur:
Within that with  structure, use a for  loop structure to go through all of the point features in the list and
print out the three fields (including shape) with

 for ptf in cur:
     print(f"{ptf[0]}, {ptf[1]}, {ptf[2]}")

After the loop, delete the cursor with del cur  though that's not really necessary...

https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/geometry.htmexplore
https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/geometry.htmexplore
https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/geometry.htmexplore
https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/geometry.htmexplore


1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 15/42

In [ ]: #



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 16/42

48, 0.8, (485701.96875, 4602950.0)
49, 0.83, (485956.28125, 4602944.5)
47, 0.83, (485589.78125, 4602934.0)
4, 0.63, (485857.5, 4602919.0)
46, 0.67, (485403.4375, 4602791.5)
1, 0.7, (485711.375, 4602716.0)
45, 0.77, (485291.28125, 4602685.0)
44, 0.83, (485141.84375, 4602566.5)
43, 0.73, (485023.1875, 4602377.5)
42, 0.8, (484917.71875, 4602118.5)
41, 0.77, (484847.40625, 4601885.5)
33, 0.92, (483146.5625, 4601819.5)
18, 0.56, (484807.8125, 4601771.0)
24, 0.56, (484785.84375, 4601753.5)
32, 0.77, (483366.28125, 4601709.5)
31, 0.8, (483678.3125, 4601657.0)
30, 0.67, (483933.25, 4601643.5)
29, 0.61, (484051.90625, 4601599.5)
55, 0.77, (485145.34375, 4601557.0)
54, 0.88, (485014.6875, 4601545.5)
28, 0.36, (484161.78125, 4601538.0)
25, 0.58, (484627.625, 4601534.0)
53, 0.88, (484866.9375, 4601486.0)
23, 1.02, (484804.4375, 4601457.5)
27, 0.63, (484298.0, 4601441.5)
67, 0.09, (482853.5, 4601431.0)
65, 0.38, (482839.375, 4601398.0)
68, 0.17, (482815.8125, 4601384.0)
69, 0.04, (482835.84375, 4601383.5)
66, 0.4, (482858.5625, 4601378.0)
26, 0.61, (484324.375, 4601353.5)
22, 0.58, (484258.46875, 4601287.5)
17, 0.83, (484959.4375, 4601175.5)
40, 0.73, (485075.9375, 4601175.5)
21, 0.8, (483902.4375, 4601160.0)
16, 0.8, (484818.8125, 4601085.5)
39, 0.19, (485262.71875, 4601072.5)
15, 0.4, (484776.0, 4601020.0)
64, 0.7, (482739.25, 4600977.5)
14, 0.38, (484759.46875, 4600958.0)
63, 0.83, (482852.875, 4600915.0)
38, 0.17, (485260.5, 4600903.0)
5, 0.73, (484772.65625, 4600892.0)
62, 0.8, (482943.78125, 4600824.0)
61, 0.58, (483003.4375, 4600812.5)
56, 0.48, (483756.21875, 4600733.0)
58, 0.67, (483699.40625, 4600716.0)
57, 0.63, (483750.53125, 4600710.5)
59, 0.8, (483412.5, 4600705.0)
13, 0.38, (484884.71875, 4600704.0)
11, 0.92, (483136.96875, 4600702.0)
10, 0.97, (483193.78125, 4600648.0)
60, 0.88, (483216.5, 4600636.5)
9, 0.7, (484922.0625, 4600555.0)
37, 0.05, (485317.625, 4600545.0)
12, 0.44, (484904.5, 4600479.0)
20, 0.92, (483506.90625, 4600437.0)



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 17/42

❔ What does ptf[2]  represent and how is it structured? :

Write points out to a text file
⌨ Now modify the code to write this out to a text file -- save the script as a new name.

Add some code just after assigning the ws variable to create a new textfile (open it for writing), and first
delete it if it already exists:

txtpath = ws + "/samples.csv"
if arcpy.Exists(txtpath): arcpy.Delete_management(txtpath)
txtout = open(txtpath, "w")

Change the last item in the fields list from "SHAPE@XY"  to "SHAPE@X" , "SHAPE@Y" . Why? We're going to
write the data to a text file, and to read it in again, it's going to be easier to parse out x and y as separate
items. What we're seeing is a lot of flexibility with the geometry.
Before the loop, write out the field names to the text file, to make it more useful:

for fld in fields[:-1]:
 txtout.write(f"{fld}, ")
txtout.write(f"{fields[-1]}\n")

Within the loop, instead of printing to the screen, use the following to write out all of the data to the text file.
Note the addition of "\n"  since (unlike print) the write method doesn't otherwise insert a new line:

      for fi in range(len(fields)-1):  txtout.write(f"{ptf[fi]}, ")
      txtout.write(f"{ptf[-1]}\n")

Then at the end, out of the for loop (so unindent), close the text file.

In [ ]: #

36, 0.05, (485408.84375, 4600386.5)
35, 0.07, (485482.4375, 4600217.5)
8, 0.05, (484966.03125, 4600185.5)
6, 0.02, (485371.46875, 4599995.5)
7, 0.02, (484911.09375, 4599726.5)



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 18/42

Later we may modify this script to run as a script tool with the feature layer as an input and writing out a text file.

InsertCursor
We'll write an InsertCursor to populate a feature class we'll create.

⌨ Use an InsertCursor to insert some points that we'll hard-code into the script, after first creating the feature
class. We'll create a shapefile, but similar code could be used to create a feature class in a geodatabase. We'll
also create a data folder to put the new shapefile in.

1. Set things up.

Use the same boilerplate as the last two scripts to import everything you need and set the workspace.
Set up the shortcut to data management tools as DM (from arcpy import management as DM)
Assign "marblePts.shp"  to ptfeatname .
Because of a bug, insert print(arcpy.ListFeatureClasses())  to "wake it up" TEST

In [ ]: #

❔ Do you see the shapefile that you're going to create?

Step 2. Create the shapefile, borrowing an existing spatial reference, and add the fields we'll need.

If that shapefile (use the variable ptfeatname ) already exists in the workspace, DM.Delete  it.
Use Describe  to get the spatialReference  from existing samples.shp  data, and assign it to sr . Hint
on coding this: assign arcpy.Describe("samples.shp").spatialReference  to sr .
Create a shapefile using the CreateFeatureclass  tool from DM , with the following parameters: (ws, 
ptfeatname, "POINT", "", "", "", sr)
For testing, see if it exists with print(arcpy.ListFeatureClasses())
Use the AddField  tool to add the fields id  of type LONG  and then name  of type TEXT  to ptfeatname .

In [ ]: #

['co2july95.shp', 'contour.shp', 'geology.shp', 'marblePts.shp', 'mvalley_pt
s.shp', 'randomPolygons.shp', 'randomPolylines.shp', 'samplePts.shp', 'sample
s.shp', 'streams.shp', 'trails.shp', 'veg.shp', 'water.shp']

['co2july95.shp', 'contour.shp', 'geology.shp', 'marblePts.shp', 'mvalley_pt
s.shp', 'randomPolygons.shp', 'randomPolylines.shp', 'samplePts.shp', 'sample
s.shp', 'streams.shp', 'trails.shp', 'veg.shp', 'water.shp']
FID
Shape
Id
name



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 19/42

❔ Did it get created, with the desired fields?

Step 3.

Create a list ptdata  of points defined as tuples {hint: [(...),(...)] }, with each point definition as an id,
name, and x&y coordinates in UTM, using the following set of values (note that in the shapefile, a numeric Id
field is always created by default, so we'll just populate it):

(12,"Upper Meadow",(483473,4601523))
(42,"Sky High Camp",(485339,4600001))

In [ ]: #

Step 4. Cursor processing

Create an insert cursor named cur using your newly created ptfeatures feature class.

cur = arcpy.da.InsertCursor(ptfeatname, ("id", "name", "SHAPE@XY"))

Loop through your ptdata list of points, assigning each as pt and inside the list:

cur.insertRow(pt)

In [ ]: #

Step 5. Wrap things up.

Outside of the loop, delete the cursor and all objects

del cur

As a finishing touch, add xy coordinates with the AddXY tool:

DM.AddXY(ptfeatname)

In [ ]: #



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 20/42

Mapping XY points
If you are running this in ArcGIS Pro and had a map open, you will have been able to see the points displayed on
the map.

Geopandas alternative
But if (and only if) you're running this from Jupyter Notebooks, you'll want to use Geopandas to see the result:

import geopandas as gpd
import matplotlib.pyplot as plt
marblepts = gpd.read_file('curdata/'+ ptfeatname)
marblepts

Then to plot the two points just requires:

marblepts.plot()

In [ ]: #

Out[ ]:
Id name POINT_X POINT_Y geometry

0 12 Upper Meadow 483473.0 4601523.0 POINT (483473.000 4601523.000)

1 42 Sky High Camp 485339.0 4600001.0 POINT (485339.000 4600001.000)



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 21/42

In [ ]:

Same as above, but in a file geodatabase.
The above code is designed to work with shapefiles in the curdata folder. We're using shapefiles in most of these
cursor scripts to make it easy to work with text files stored in the same folder, but we should also briefly look at
how a cursor-based script would work with a geodatabase.

The above script doesn't work with text files, and is pretty easy to change to working with a geodatabase:
simply change the workspace to "marbles.gdb" and change "marblePts.shp" and "samples.shp" to
"marblePts" and "samples".
However, we won't be able to look at it with geopandas, since that can only work with OpenGIS data like
shapefiles.

In [ ]: #

Out[ ]: <AxesSubplot: >

['co2july95', 'geology', 'samples', 'streams', 'trails', 'veg', 'water', 'wat
rshed', 'contours10m', 'marblePts', 'cont']
['co2july95', 'geology', 'samples', 'streams', 'trails', 'veg', 'water', 'wat
rshed', 'contours10m', 'cont', 'marblePts']
OBJECTID
Shape
id
name



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 22/42

Read a text file into a feature class
In an earlier script, we used a search cursor to read in a shapefile and write out a text CSV file of data. What if
we wanted to do the reverse? We could do this by combining a method for reading text files (see section 1) with
what we just wrote to create a feature class and and insert point features. Note that we should end up with just a
copy of the feature class, but in the process we'll see how we can create a feature class. Feel free to borrow
parts of code, but you do need to be careful to set it up to work the way it needs to.

We'll work with the samples.csv file we wrote out earlier, and create a samplepts.shp output in the data
folder we just used for shapefiles. After you do this, you might want to try modifying it to work with the file
geodatabase.
Start with the code from Mb3_InsertCreatePts.py, but change the output feature class to "samplePts" and
make other changes after that�

In [ ]: #

Assign to inputFile a path to the samples.csv  file you created earlier, and then create a textfile read object with
textin = open(inputFile, "r")

Have a careful look at the samples.csv file you created earlier by opening it in a text editor like Notepad (not
Excel). - - Note that it's comma-delimited, and the first line of text is the list of field names. Get the field
names as a list with flds[0]

In [ ]: #

Continue borrowing code from Mb3_InsertCreatePts.py, but change the AddField statements to instead add
"sample_id" of type "LONG" and "CATOT" of type "DOUBLE". This should make sense from your review of the
samples.csv file.

For now, make sure to include the various print(arcpy.ListFeatureClasses()) statements to wake things up, due to
some kind of bug related to Pro.

In [ ]: #

['co2july95.shp', 'contour.shp', 'geology.shp', 'marblePts.shp', 'mvalley_pt
s.shp', 'randomPolygons.shp', 'randomPolylines.shp', 'samplePts.shp', 'sample
s.shp', 'streams.shp', 'trails.shp', 'veg.shp', 'water.shp']

Out[ ]: ['sample_id', 'CATOT', 'SHAPE@X', 'SHAPE@Y']

['co2july95.shp', 'contour.shp', 'geology.shp', 'marblePts.shp', 'mvalley_pt
s.shp', 'randomPolygons.shp', 'randomPolylines.shp', 'samplePts.shp', 'sample
s.shp', 'streams.shp', 'trails.shp', 'veg.shp', 'water.shp']



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 23/42

Cursor processing while reading in data:

You might be tempted to use the field names detected above, but we'll want to create SHAPE@XY  instead of
a separate SHAPE@X  and SHAPE@Y , so set up the cursor with

cur = arcpy.da.InsertCursor(ptfeatname, ("sample_id", "CATOT", "SHAPE@XY"))

.

After the insert cursor creation line, create a Boolean flag to allow you to ignore the first row of text from
textin: ```

firstrow = True

The loop will be different: use

for pt in textin:

then within the loop, use

if not firstrow:

to only create new point features when not the first row of text.

Read in the values from the row of text, splitting at the commas:

dta = txtrow.split(",")

Build the point geometric object with the X & Y values from the text file (notice how this is different from what
we did before, and that we have to float the text), then insert it.

outdta = (int(dta[0]), float(dta[1]), (float(dta[2]), float(dta[3])))
cur.insertRow(outdta)

After the if  structure (so unindented), set firstrow  to False .

In [ ]: #

Close the text file, delete the cursor and use AddXY the same as before.



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 24/42

In [ ]: #

In an ArcGIS map you should see the results (refresh the map if necessary).

... or outside ArcGIS, use Geopandas:
Then using similar code to what you used before with geopandas and matplotlib, create a map of the
samplepts.

import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt
samplepts = gpd.read_file('curdata/'+ ptfeatname)
samplepts

samplepts.plot(column="CATOT",cmap=("YlOrBr"))

In [ ]: #

Out[ ]:
Messages

Out[ ]:
Id sample_id CATOT POINT_X POINT_Y geometry

0 0 49 0.83 485956.28125 4602944.5 POINT (485956.281 4602944.500)

1 0 47 0.83 485589.78125 4602934.0 POINT (485589.781 4602934.000)

2 0 4 0.63 485857.50000 4602919.0 POINT (485857.500 4602919.000)

3 0 46 0.67 485403.43750 4602791.5 POINT (485403.438 4602791.500)

4 0 1 0.70 485711.37500 4602716.0 POINT (485711.375 4602716.000)

... ... ... ... ... ... ...

56 0 36 0.05 485408.84375 4600386.5 POINT (485408.844 4600386.500)

57 0 35 0.07 485482.43750 4600217.5 POINT (485482.438 4600217.500)

58 0 8 0.05 484966.03125 4600185.5 POINT (484966.031 4600185.500)

59 0 6 0.02 485371.46875 4599995.5 POINT (485371.469 4599995.500)

60 0 7 0.02 484911.09375 4599726.5 POINT (484911.094 4599726.500)

61 rows × 6 columns



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 25/42

In [ ]: #

Create random polylines
⌨ Let's create some polylines. There can be many situations where you might want to create polylines or
polygons from data you provide to the script. These could be from real data but random elements can also be
useful. We'll keep it simple and generate random lines, using a "random-walk" algorithm similar to what might
be used in an agent-based model, though greatly simplified here. We'll generate these random lines to fit within
the extent of our marbles study area.

1. Start with the same boilerplate you've been using to reference the curdata workspace, importing DM, etc.
Add random to the list of imported modules.

In [ ]: #

1. Also as we've done above, use Describe and its spatialReference property to get the spatial reference of
samples.shp, and assign it to sr.

In [ ]: #

Out[ ]: <AxesSubplot: >



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 26/42

1. Then also from the Describe object, get XMin , XMax , YMin , and YMax  from the Extent  property and
assign these to simple variables xmin , xmax , ymin  and ymax . We'll use these to make sure our lines
end up in the study area.

In [ ]: #

1. Assign xrg  ("x range") as XMax-XMin, and yrg as YMax-YMin, then xstp as xrg/20 and ystp as yrg/20.
We're going to use these to create visible spacing of vertices on our polylines.

In [ ]: #

1. Assign the filename "randomPolylines.shp" to a variable featfile, then delete it if it exists.

In [ ]: #

1. Create a feature class in ws with that filename in featfile, using the parameters: (ws, featfile, "POLYLINE",
"", "", "", sr)

In [ ]: #

1. Create an InsertCursor called cur using id and SHAPE@ as fields. So assign to cur the following:
arcpy.da.InsertCursor(ws + "\" + featfile, ("id", "SHAPE@"))

In [ ]: #

1. Create a method variable rnd from the random method of the random module. This method returns a
random floating-point number between 0 and 1: rnd = random.random

In [ ]: #



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 27/42

1. In order to create 12 polylines, create a for loop that repeats 12 times using i  as index. Within that loop:

Create an empty list called pointlist . Polylines and polygons are built from series of vertices, and
we'll need to create each vertex as a point object.
Create an initial point that will fit within the extent (study the method used to see how it fits within the
extent), using the rnd method assigned above: p = arcpy.Point(rnd() * xrg + xmin, rnd() * 
yrg + ymin)
Append the point to pointlist

Then create an interior for j  loop that goes 30 times to create plenty of vertices for each polyline. Note that
vertices may extend a bit beyond the extent. We could test for that and avoid it, but we'll just go with it for
simplicity. Note also that we'll reuse the p  point feature, which doesn't cause any problems.

Create a new p point that diverges from the previous point by a random distance from zero to xstp and
ystp distances: p = arcpy.Point(p.X + xstp*rnd() - xstp*rnd(), p.Y + ystp*rnd() - 
ystp*rnd())
Append that point to pointlist Then create an array from pointlist, then make a polyline from it:

array = arcpy.Array(pointlist)
polyline = arcpy.Polyline(array)

Insert that polyline as an inserted row in the cursor

cur.insertRow([i, polyline])

In [ ]: #

1. Finally, delete the cursor with del cur.

In [ ]: #

You should see the result displayed in ArcGIS... (but you may need to refresh the map)

Or in Geopandas, similar code to what we used earlier.
Again only if you're not in ArcGIS Pro, you can see results displayed with:

import geopandas as gpd
import matplotlib.pyplot as plt
randomlines = gpd.read_file('curdata/'+ featfile)
randomlines

randomlines.plot(column="Id", cmap=("Spectral"))



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 28/42

In [ ]: #

In [ ]: #

Out[ ]:
Id geometry

0 0 LINESTRING (484855.538 4600963.158, 484775.111...

1 1 LINESTRING (484536.985 4602234.953, 484615.485...

2 2 LINESTRING (483574.810 4600782.501, 483610.263...

3 3 LINESTRING (485918.059 4602715.329, 485935.273...

4 4 LINESTRING (483380.354 4601547.181, 483406.847...

5 5 LINESTRING (484018.669 4600813.960, 484086.832...

6 6 LINESTRING (482749.179 4600774.847, 482775.303...

7 7 LINESTRING (485698.447 4599836.956, 485646.521...

8 8 LINESTRING (485237.285 4600636.199, 485286.713...

9 9 LINESTRING (483974.995 4601215.661, 484062.971...

10 10 LINESTRING (484039.708 4602754.249, 483981.857...

11 11 LINESTRING (484808.663 4600900.560, 484918.152...

Out[ ]: <AxesSubplot: >



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 29/42

Random polygons
Creating polygons is almost identical to creating polylines, just that they close from the last point to the first
point again. Take the code you just wrote and convert it in various places to create polygons. These are the
changes:

"randomPolylines.shp" becomes "randomPolygons.shp"
When creating the feature class, use "POLYGON" instead of "POLYLINE"
The array of points is used to create polygons with polygon = arcpy.Polygon(array) , then that
polygon  feature is inserted with cur.insertRow([i, polygon])

In ArcGIS Pro, you may need to refresh the map, but you should see the results on an open map.

In [ ]: #

Geopandas display
Again, only if you're running this outside ArcGIS Pro, you can display your results in Geopandas with:

import geopandas as gpd
import matplotlib.pyplot as plt
randompolys = gpd.read_file('curdata/'+ featfile)
randompolys



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 30/42

In [ ]: #

Using pandas with arcpy

Earlier we looked at the data analysis python library called pandas, and there we used csv files as input. We
can also use it together with arcpy and its cursors and geodatabases.

We'll explore creating various data types using search cursors on a feature class and then loading that data
into a pandas dataframe. Then we'll explore various methods and properties available to us to access data
within our dataframes. We'll conclude with converting a table to a numpy array.

⌨ Enter the code below in your first cell:

import pandas as pd
import arcpy, os
ws = os.getcwd()

In [ ]: #

Out[ ]: <AxesSubplot: >



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 31/42

Loading various data types in a pandas dataframe

⌨ Next, we'll want to assign the schools variable to our "SF_Schools" feature class:

schools = ws + r"\SF.gdb"

In [ ]: #

⌨ Then let's see what the field names are:

fields = []
for fld in arcpy.ListFields(schools):
   fields.append(fld.name)
fields

In [ ]: #

⌨ Once we've defined the schools feature class we're going to go through multiple examples of loading
different data types into a pandas dataframe. Below are examples where we can generate a list, dictionary,
numpy array, etc. all with using arcpy search cursors. First, let's examine how we can build a list of lists and
load that into a dataframe.

We'll just list the first few list members, and continue that practice in later code chunks...

Out[ ]: ['OBJECTID',
'Shape',
'X',
'Y',
'Match_addr',
'Name',
'District',
'County',
'Street',
'City',
'State',
'ZIP9',
'DistType',
'Type',
'Latitude',
'Longitude',
'Grades',
'Status_1']



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 32/42

#create a list of lists
school_list = []
with arcpy.da.SearchCursor(schools, ["OBJECTID", "X", "Y", "Name", "District", "Ci
ty", "Type" ]) as cur:
   for row in cur:
       school_list.append(list(row[0:]))  # we append a list of row values to lar
ger list [row[0], row[1], row[2], row[3]]
school_list[:3]

In [ ]: #

❔ What data type is returned from the above block of code? What is the data type of "School_list"?

⛬

Answer: A list of lists

⌨ We can create a dataframe from the object "school_list" above. In this situation we'll need to define the
cooresponding column names when we load the data into the dataframe.

Out[ ]: [[1,
 -122.419992341,
 37.7766494543,
 'Alternative/Opportunity',
 'San Francisco County Office of Education',
 'San Francisco',
 'ALTERNATIVE'],
[2,
 -122.463582,
 37.763352,
 'Cross Cultural Enviromental Leadership (xcel) Acad',
 'San Francisco Unified',
 'San Francisco',
 'HIGH SCHOOL'],
[3,
 -122.395977,
 37.7192,
 'KIPP Bayview Academy',
 'San Francisco Unified',
 'San Francisco',
 'MIDDLE']]



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 33/42

#load our school list into a pandas Dataframe
df_schools_list = pd.DataFrame(school_list, columns = ["OBJECTID","Name", "Distric
t", "City", "Type" ])
df_schools_list[:3]

In [ ]: #

⌨ Next, can also create a list of tuples data type and load that into a dataframe. When we create a search
cursor the row object that is returned, is returned as a tuple data type.

#create a list of tuples
school_list_tuples = []
with arcpy.da.SearchCursor(schools, ["OBJECTID","Name", "District", "City", "Type" 
]) as cur:
   for row in cur:
       school_list_tuples.append(row[0:])  # the row object in search cursor retu
rns the row as a tuple
school_list_tuples[:3]

Out[ ]:
OBJECTID X Y Name District City Type

0 1 -122.419992 37.776649 Alternative/Opportunity

San
Francisco

County
Office of

Education

San
Francisco ALTERNATIVE

1 2 -122.463582 37.763352
Cross Cultural
Enviromental

Leadership (xcel) ...

San
Francisco

Unified

San
Francisco

HIGH
SCHOOL

2 3 -122.395977 37.719200 KIPP Bayview
Academy

San
Francisco

Unified

San
Francisco MIDDLE



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 34/42

In [ ]: #

⌨ Then we'll load this list of tuples object we've built into a pandas dataframe.

df_schools_tuples = pd.DataFrame(school_list_tuples, columns = ["OBJECTID","Name", 
"District", "City", "Type" ])
df_schools_tuples[:3]

In [ ]: #

Out[ ]: [(1,
 -122.419992341,
 37.7766494543,
 'Alternative/Opportunity',
 'San Francisco County Office of Education',
 'San Francisco',
 'ALTERNATIVE'),
(2,
 -122.463582,
 37.763352,
 'Cross Cultural Enviromental Leadership (xcel) Acad',
 'San Francisco Unified',
 'San Francisco',
 'HIGH SCHOOL'),
(3,
 -122.395977,
 37.7192,
 'KIPP Bayview Academy',
 'San Francisco Unified',
 'San Francisco',
 'MIDDLE')]

Out[ ]:
OBJECTID X Y Name District City Type

0 1 -122.419992 37.776649 Alternative/Opportunity

San
Francisco

County
Office of

Education

San
Francisco ALTERNATIVE

1 2 -122.463582 37.763352
Cross Cultural
Enviromental

Leadership (xcel) ...

San
Francisco

Unified

San
Francisco

HIGH
SCHOOL

2 3 -122.395977 37.719200 KIPP Bayview
Academy

San
Francisco

Unified

San
Francisco MIDDLE



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 35/42

⌨ Now, let's build a dictionary using a search cursor and then load that dictionary into a dataframe. What's
important is that you you understand the structure of the dictionary we're loading into the dataframe. We need
to correspond the key to the field name and all the values of that column in the attribute table to that key.

school_dict = {}
fields = ["OBJECTID","Name", "District", "City", "Type"]
with arcpy.da.SearchCursor(schools, fields) as cur:
   for row in cur:
       for field_name, data_row in zip(fields,row):
           school_dict.setdefault(field_name, []).append(data_row)
school_dict.keys()

In [ ]: #

⌨ With this dictionary, we can create another pandas dataframe.

df_school_dict = pd.DataFrame(school_dict)
df_school_dict.keys()

In [ ]: #

⌨ Print out each of the data types we created in the above steps:

print(type(school_list))

print(type(school_dict))

print(type(school_list_tuples[0]))

In [ ]: #

Out[ ]: dict_keys(['OBJECTID', 'X', 'Y', 'Name', 'District', 'City', 'Type'])

Out[ ]: Index(['OBJECTID', 'X', 'Y', 'Name', 'District', 'City', 'Type'], dtype='obj
ect')

<class 'list'>
<class 'dict'>
<class 'tuple'>



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 36/42

Convert a featureclass to a numpy array then a
dataframe then a geodataframe
We've just been working with the SF_Schools  feature class from SF.gdb . Let's look at a method for
converting this to a numpy array, and then a dataframe, finally a geodataframe.

⌨ We'll start by creating the path to the schools featureclass again.

schools = ws + r"\SF.gdb\SF_Schools"

In [ ]: #

Create a numpy array from the feature class
⌨ Next we'll use that featureclass path to create a numpy array:

arr = arcpy.da.TableToNumPyArray(schools, ("Name", "District", "City", "Type"))
arr[:3]

In [ ]: #

Create a dataframe from the numpy array
⌨ After you've created your NumPy array you can load it into a dataframe using pd.DataFrame().

schools_df = pd.DataFrame(arr)
schools_df

Out[ ]: array([(-122.41999234, 37.77664945, 'Alternative/Opportunity', 'San Francisc
o County Office of Education', 'San Francisco', 'ALTERNATIVE'),
      (-122.463582  , 37.763352  , 'Cross Cultural Enviromental Leadership 
(xcel) Acad', 'San Francisco Unified', 'San Francisco', 'HIGH SCHOOL'),
      (-122.395977  , 37.7192    , 'KIPP Bayview Academy', 'San Francisco U
nified', 'San Francisco', 'MIDDLE')],
     dtype=[('X', '<f8'), ('Y', '<f8'), ('Name', '<U254'), ('District', '<U
254'), ('City', '<U254'), ('Type', '<U254')])



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 37/42

In [ ]: #

Convert to geodataframe and mapping in geopandas
⌨ Now that we have a dataframe with X & Y coordinates in a known crs ("EPSG:4326"), we can make a
geodataframe from it.

import geopandas as gpd
sf_schools = gpd.GeoDataFrame(schools_df, geometry=gpd.points_from_xy(schools_df.
X, schools_df.Y), crs="EPSG:4326")

In [ ]: #

Out[ ]:
X Y Name District City Type

0 -122.419992 37.776649 Alternative/Opportunity
San Francisco
County Office
of Education

San
Francisco ALTERNATIVE

1 -122.463582 37.763352
Cross Cultural

Enviromental Leadership
(xcel) ...

San Francisco
Unified

San
Francisco

HIGH
SCHOOL

2 -122.395977 37.719200 KIPP Bayview Academy San Francisco
Unified

San
Francisco MIDDLE

3 -122.437025 37.783220 KIPP San Francisco Bay
Academy

San Francisco
Unified

San
Francisco MIDDLE

4 -122.402234 37.777109 Five Keys Charter (SF
Sheriff's)

San Francisco
Unified

San
Francisco

HIGH
SCHOOL

... ... ... ... ... ... ...

186 -122.499586 37.750777 Sunset Elementary San Francisco
Unified

San
Francisco ELEMENTARY

187 -122.419744 37.781813 Tenderloin Community San Francisco
Unified

San
Francisco ELEMENTARY

188 -122.434098 37.783621 Western Addition Academy San Francisco
Unified

San
Francisco ELEMENTARY

189 -122.434247 37.784805 The Jump Academy San Francisco
Unified

San
Francisco ELEMENTARY

190 -122.426158 37.754743 Edison Charter Academy
SBE - Edison

Charter
Academy

San
Francisco ELEMENTARY

191 rows × 6 columns



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 38/42

⌨ We can also reproject it to web mercator to use with a contextily basemap.

sf_schools_webm = sf_schools.to_crs("EPSG:3857")
import contextily as cx
basemap, basemap_extent = cx.bounds2img(*sf_schools_webm.total_bounds, zoom=12, ll
=False)

In [ ]: #

⌨ Then use similar code to what we've used before to plot the school locations

from matplotlib import pyplot as plt
f, ax1 = plt.subplots(1, figsize=(20,20))
ax1.set_title("San Francisco Schools")
plt.imshow(basemap, extent=basemap_extent)
sf_schools_webm.plot(ax=plt.gca(), marker='o', markersize=18, color="purple")
ax1.set_axis_off()
plt.axis()



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 39/42

In [ ]: #



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 40/42

Out[ ]: (-13638811.83098057,
-13619243.951739563,
4529964.044292687,
4559315.8631541915)



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 41/42



1/28/24, 10:10 AM Ex08_arcpyDataCursorsPandas_results

file:///C:/Users/900008452/Box/course/625/exer/exercise_html/results/Ex08_arcpyDataCursorsPandas_results.html 42/42

key
➦ This directs you to do something specific, maybe in the operating system or answer something conceptual.

⌨ Coding you need to do, in the subsequent code cell.

❔ Questions to answer in the same markdown cell.

⛬ Response to question or need for interpretation.

In [ ]:




